Уравнение Пелля — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 12: Строка 12:
 
<tex>x+\sqrt{d}y>2y</tex>. Следовательно <tex>1=x^2-dy^2=(x-\sqrt{d}y)(x+sqrt{d}y)>(x-\sqrt{d}y)2y</tex>. Разделим обе части на <tex>2y^2</tex> получим :
 
<tex>x+\sqrt{d}y>2y</tex>. Следовательно <tex>1=x^2-dy^2=(x-\sqrt{d}y)(x+sqrt{d}y)>(x-\sqrt{d}y)2y</tex>. Разделим обе части на <tex>2y^2</tex> получим :
 
<tex>\frac{x}{y}-\sqrt{d} < \frac{1}{2y^2}</tex>. Значит по теореме о приближении <tex>\frac{x}{y}</tex> является подходящей дробью для <tex>\sqrt{d}</tex>.
 
<tex>\frac{x}{y}-\sqrt{d} < \frac{1}{2y^2}</tex>. Значит по теореме о приближении <tex>\frac{x}{y}</tex> является подходящей дробью для <tex>\sqrt{d}</tex>.
 +
}}
 +
 +
{{Лемма
 +
|statement=
 +
Для любого вещественного числа <tex> \epsilon</tex> и натурального <tex>N</tex> существует такое целое число <tex>а</tex> и натуральное число <tex> b </tex>, что <tex>b\leqslant N</tex> и <tex> ~|b\epsilon - a|\leqslant \frac{1}{N+1}</tex>
 +
|proof=
 
}}
 
}}

Версия 13:33, 29 июня 2010

Эта статья находится в разработке!


Определение:
Уравнение вида [math]x^2-dy^2=1[/math], где [math]d\in\mathbb{N}[/math] не является квадратом, называется уравнением Пелля
Теорема:
Любое решение уравнения Пелля - подходящая дробь для [math]\sqrt{d}[/math].
Доказательство:
[math]\triangleright[/math]

Рассматриваем [math]x,y\gt 0[/math], остальные корни получатся из симметрии. Так как [math]\sqrt{d}\geqslant 1[/math], то [math]x\gt y\gt 0[/math]. [math]x+\sqrt{d}y\gt 2y[/math]. Следовательно [math]1=x^2-dy^2=(x-\sqrt{d}y)(x+sqrt{d}y)\gt (x-\sqrt{d}y)2y[/math]. Разделим обе части на [math]2y^2[/math] получим :

[math]\frac{x}{y}-\sqrt{d} \lt \frac{1}{2y^2}[/math]. Значит по теореме о приближении [math]\frac{x}{y}[/math] является подходящей дробью для [math]\sqrt{d}[/math].
[math]\triangleleft[/math]
Лемма:
Для любого вещественного числа [math] \epsilon[/math] и натурального [math]N[/math] существует такое целое число [math]а[/math] и натуральное число [math] b [/math], что [math]b\leqslant N[/math] и [math] ~|b\epsilon - a|\leqslant \frac{1}{N+1}[/math]