Участник:Muravyov — различия между версиями
Muravyov (обсуждение | вклад) |
Muravyov (обсуждение | вклад) |
||
Строка 11: | Строка 11: | ||
Любая диагональ делит <tex>P</tex> на два многоугольника <tex>P_1</tex> и <tex>P_2</tex>. За <tex>m_1</tex> и <tex>m_2</tex> обозначим количество вершин в <tex>P_1</tex> и <tex>P_2</tex> соответственно. <tex>m_1 < n</tex> и <tex>m_2 < n</tex>, поэтому по предположению индукции у <tex>P_1</tex> и <tex>P_2</tex> существует триангуляция, следовательно и у <tex>P</tex> она существует. | Любая диагональ делит <tex>P</tex> на два многоугольника <tex>P_1</tex> и <tex>P_2</tex>. За <tex>m_1</tex> и <tex>m_2</tex> обозначим количество вершин в <tex>P_1</tex> и <tex>P_2</tex> соответственно. <tex>m_1 < n</tex> и <tex>m_2 < n</tex>, поэтому по предположению индукции у <tex>P_1</tex> и <tex>P_2</tex> существует триангуляция, следовательно и у <tex>P</tex> она существует. | ||
− | Докажем, что триангуляция <tex>P</tex> состоит из <tex>n - 2</tex> треугольников. Рассмотрим произвольную диагональ в триангуляции <tex>T_P</tex> | + | Докажем, что триангуляция <tex>P</tex> состоит из <tex>n - 2</tex> треугольников. Рассмотрим произвольную диагональ <tex>d</tex> в триангуляции <tex>T_P</tex>. <tex>d</tex> делит <tex>P</tex> на два многоугольника <tex>P_1</tex> и <tex>P_2</tex>, количество вершин в которых <tex>m_1</tex> и <tex>m_2</tex> соответственно. Каждая вершина <tex>P</tex> встречается только в одном из двух многоугольников <tex>P_1</tex> и <tex>P_2</tex>, за исключением тех, которые являются концами <tex>d</tex>, поэтому справедливо следующее: <tex>m_1 + m_2 = n + 2</tex>. |
}} | }} |
Версия 10:50, 27 апреля 2012
Триангуляция полигона — декомпозиция многоугольника
на множество треугольников, внутренние области которых попарно не пересекаются и объединение которых в совокупности составляет . В строгом смысле слова, эти треугольники могут иметь вершины только в вершинах исходного многоугольника.Простым многоугольником является односвязная фигура, стороны которой не пересекаются.
Теорема (О существовании триангуляции полигона): |
У любого простого -вершинного многоугольника существует триангуляция, причём количество треугольников в ней . |
Доказательство: |
Доказательство ведётся индуктивно по Докажем, что триангуляция . При теорема тривиальна. Рассмотрим случай при и предположим, что теорема выполняется при всех . Докажем существование диагонали в многоугольнике . Возьмём самую левую вершину многоугольника и две смежных с ней вершины и . Если отрезок принадлежит внутренней области — мы нашли диагональ. В противном случае, во внутренней области треугольника или на самом отрезке содержится одна или несколько вершин . Выберем самую наиболее далеко отстоящую от вершину . Отрезок, соединяющий и не может пересекать сторон , поскольку в противном случае одна из вершин это отрезка будет располагаться дальше от , чем . Это противоречит условию выбора . В итоге получаем, что — диагональ. Любая диагональ делит на два многоугольника и . За и обозначим количество вершин в и соответственно. и , поэтому по предположению индукции у и существует триангуляция, следовательно и у она существует. состоит из треугольников. Рассмотрим произвольную диагональ в триангуляции . делит на два многоугольника и , количество вершин в которых и соответственно. Каждая вершина встречается только в одном из двух многоугольников и , за исключением тех, которые являются концами , поэтому справедливо следующее: . |