Уравнение Пелля — различия между версиями
Строка 25: | Строка 25: | ||
|statement= | |statement= | ||
Уравнение Пелля имеет нетривиальное решение. | Уравнение Пелля имеет нетривиальное решение. | ||
+ | |proof= | ||
+ | Положим <tex>\epsilon=\sqrt{d}</tex>. Для любого натурального <tex>n>1</tex> в силу леммы существуют такие натуральные числа <tex>a_n</tex> и <tex>b_n</tex>, что <tex>b_n < n</tex> и <tex>~|a_n-b_n\sqrt{d}|<\frac{1}{n}</tex>. Далее : <tex>~|a_n^2-db_n^2|=~|a_n-b_n\sqrt{d}|\cdot~|a_n+b_n\sqrt{d}|\leqslant\frac{1}{n}~|a_n-b_n\sqrt{d}+2b_n\sqrt{d}|\leqslant 1+2\sqrt{d}</tex>. Поэтому <tex>a_n^2-db_n^2</tex> принимает конечное число значений. Но <tex>n</tex> принимает бесконечное число значений. Поэтому существует такое число <tex>c</tex>, что для него есть бесконечно много пар <tex>(a_n, b_n)</tex>, таких что <tex>a_n^2-db_n^2=c</tex>. | ||
+ | |||
+ | Рассмотрим остатки от деления на <tex>~|c|</tex> чисел <tex> a_n, b_n</tex>. Количество остатков конечно, а пар бесконечно, поэтому существуют две различные пары <tex> (a_1, b_1),(a_2,b_2)</tex> такие, что <tex>a_1^2-db_1^2=c=a_2^2-b_2^2</tex> и <tex> a_1\equiv a_2(mod~|c|)</tex>, <tex>b_1\equiv b_2(mod~|c|)</tex>. | ||
}} | }} |
Версия 17:30, 30 июня 2010
Эта статья находится в разработке!
Определение: |
Уравнение вида | , где не является квадратом, называется уравнением Пелля
Теорема: |
Любое решение уравнения Пелля - подходящая дробь для . |
Доказательство: |
Рассматриваем , остальные корни получатся из симметрии. Так как , то . . Следовательно . Разделим обе части на получим : . Значит по теореме о приближении является подходящей дробью для . |
Лемма: |
Для любого вещественного числа и натурального существует такое целое число и натуральное число , что и |
Доказательство: |
Рассмотрим числа 0 и 1, а также дробные части чисел Если . Если все расстояния между этими числами было больше , то приходим к противоречию. Значит какое-то из расстояний не превосходит . , где , то . Так что берём и . Два других случая очевидны. |
Теорема: |
Уравнение Пелля имеет нетривиальное решение. |
Доказательство: |
Положим Рассмотрим остатки от деления на . Для любого натурального в силу леммы существуют такие натуральные числа и , что и . Далее : . Поэтому принимает конечное число значений. Но принимает бесконечное число значений. Поэтому существует такое число , что для него есть бесконечно много пар , таких что . чисел . Количество остатков конечно, а пар бесконечно, поэтому существуют две различные пары такие, что и , . |