Теорема о подгруппах циклической группы — различия между версиями
(→Доказательство) |
(→Доказательство) |
||
Строка 2: | Строка 2: | ||
=== Доказательство === | === Доказательство === | ||
Все элементы группы <tex>G</tex> с образующей <tex>a</tex> представимы в виде <tex>a^n</tex>. Предположим, что <tex>H</tex> нетривиальна. Возьмем наименьшее ненулевое <tex>n</tex>, что <tex>a^n\in H</tex> и положим <tex>a^n=b</tex>. Пусть теперь есть некоторое <tex>c\in H</tex>. Раз <tex>c\in H\subseteq G</tex>, то <tex>c=a^m</tex> для некоторого <tex>m</tex>. Имеем <tex>m=k\cdot n+r</tex>, где <tex>r<n</tex>. Вместе с <tex>b</tex> и <tex>c</tex> H содержит и <tex>b^{-k}\cdot c=a^r</tex>. Поэтому если <tex>r\neq 0</tex>, то <tex>n</tex> - не минимальное ненулевое число, что <tex>a^n\in H</tex>. Таким образом, необходимо <tex>r=0</tex>. Значит, все элементы <tex>H</tex> представимы в виде <tex>b^m</tex> для некоторого m, что и означает, что <tex>H</tex> - циклическая группа. | Все элементы группы <tex>G</tex> с образующей <tex>a</tex> представимы в виде <tex>a^n</tex>. Предположим, что <tex>H</tex> нетривиальна. Возьмем наименьшее ненулевое <tex>n</tex>, что <tex>a^n\in H</tex> и положим <tex>a^n=b</tex>. Пусть теперь есть некоторое <tex>c\in H</tex>. Раз <tex>c\in H\subseteq G</tex>, то <tex>c=a^m</tex> для некоторого <tex>m</tex>. Имеем <tex>m=k\cdot n+r</tex>, где <tex>r<n</tex>. Вместе с <tex>b</tex> и <tex>c</tex> H содержит и <tex>b^{-k}\cdot c=a^r</tex>. Поэтому если <tex>r\neq 0</tex>, то <tex>n</tex> - не минимальное ненулевое число, что <tex>a^n\in H</tex>. Таким образом, необходимо <tex>r=0</tex>. Значит, все элементы <tex>H</tex> представимы в виде <tex>b^m</tex> для некоторого m, что и означает, что <tex>H</tex> - циклическая группа. | ||
+ | |||
+ | [[Категория: Теория групп]] |
Версия 22:17, 29 июня 2010
Теорема: любая подгруппа
циклической группы сама является циклической группой.Доказательство
Все элементы группы
с образующей представимы в виде . Предположим, что нетривиальна. Возьмем наименьшее ненулевое , что и положим . Пусть теперь есть некоторое . Раз , то для некоторого . Имеем , где . Вместе с и H содержит и . Поэтому если , то - не минимальное ненулевое число, что . Таким образом, необходимо . Значит, все элементы представимы в виде для некоторого m, что и означает, что - циклическая группа.