Класс P — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Ссылка на определение DTIME)
(Свойства класса P)
Строка 12: Строка 12:
  
 
== Свойства класса P ==
 
== Свойства класса P ==
# Замкнутость объединения, пересечения, конкатенации, замыкания Клини и дополнения. Если <tex>L_1, L_2 \in P</tex>, то: <tex>L_1 \cup L_2 \in P</tex>, <tex>L_1 \cap L_2 \in P</tex>, <tex>L_1 L_2 \in P</tex>, <tex>L_1^* \in P</tex> и <tex>\overline{L_1} \in P</tex>.
 
 
# Замкнутость относительно [[Сведение по Карпу|сведения по Карпу]]. <tex> L \in P , M \le L \Rightarrow M \in P</tex>
 
# Замкнутость относительно [[Сведение по Карпу|сведения по Карпу]]. <tex> L \in P , M \le L \Rightarrow M \in P</tex>
 
# Замкнутость относительно [[Сведение по Куку|сведения по Куку]]. <tex>L \subset P \Rightarrow P=P^L</tex>.
 
# Замкнутость относительно [[Сведение по Куку|сведения по Куку]]. <tex>L \subset P \Rightarrow P=P^L</tex>.
 +
# Замкнутость объединения, пересечения, конкатенации, замыкания Клини и дополнения. Если <tex>L_1, L_2 \in P</tex>, то: <tex>L_1 \cup L_2 \in P</tex>, <tex>L_1 \cap L_2 \in P</tex>, <tex>L_1 L_2 \in P</tex>, <tex>L_1^* \in P</tex> и <tex>\overline{L_1} \in P</tex>.
 +
#* Рассмотрим доказательство замкнутости замыкания Клини (остальные доказательства строятся аналогично). Пусть <tex>L_1 \in P</tex>, <tex>p_1</tex> {{---}} разрешитель <tex>L_1</tex>, работающий за полиномиальное время. Построим разрешитель <tex>q</tex> для языка <tex>L_1^*</tex>.
 +
<tex>q(w):</tex>
 +
    if (|w| = 0)
 +
        return true
 +
    for (<tex>i = 1 \ldots |w|</tex>)
 +
        if (<tex>p_1(w[1..i])</tex> and <tex>q(w[i + 1..|w|])</tex>)
 +
            return true
 +
    return false
 +
Мне кажется, он за полином работает. Завтра формально напишу, почему (если смогу).
  
 
== Соотношение классов Reg и P ==
 
== Соотношение классов Reg и P ==

Версия 21:48, 30 апреля 2012

Определение

Определение:
Класс [math]P[/math] — класс языков (задач), разрешимых на детерминированной машине Тьюринга за полиномиальное время, то есть: [math]P = \bigcup\limits_{p \in poly}DTIME(p(n))[/math][1].


Итого, язык [math]L[/math] лежит в классе [math]P[/math] тогда и только тогда, когда существует такая детерминированная машина Тьюринга [math]m[/math], что:

  1. [math]m[/math] завершает свою работу за полиномиальное время на любых входных данных
  2. если на вход машине [math]m[/math] подать слово [math]l \in L[/math], то она допустит его
  3. если на вход машине [math]m[/math] подать слово [math]l \not\in L[/math], то она не допустит его

Свойства класса P

  1. Замкнутость относительно сведения по Карпу. [math] L \in P , M \le L \Rightarrow M \in P[/math]
  2. Замкнутость относительно сведения по Куку. [math]L \subset P \Rightarrow P=P^L[/math].
  3. Замкнутость объединения, пересечения, конкатенации, замыкания Клини и дополнения. Если [math]L_1, L_2 \in P[/math], то: [math]L_1 \cup L_2 \in P[/math], [math]L_1 \cap L_2 \in P[/math], [math]L_1 L_2 \in P[/math], [math]L_1^* \in P[/math] и [math]\overline{L_1} \in P[/math].
    • Рассмотрим доказательство замкнутости замыкания Клини (остальные доказательства строятся аналогично). Пусть [math]L_1 \in P[/math], [math]p_1[/math] — разрешитель [math]L_1[/math], работающий за полиномиальное время. Построим разрешитель [math]q[/math] для языка [math]L_1^*[/math].
[math]q(w):[/math]
    if (|w| = 0)
        return true
    for ([math]i = 1 \ldots |w|[/math])
        if ([math]p_1(w[1..i])[/math] and [math]q(w[i + 1..|w|])[/math])
            return true
    return false

Мне кажется, он за полином работает. Завтра формально напишу, почему (если смогу).

Соотношение классов Reg и P

Теорема:
Класс регулярных языков входит в класс [math]P[/math], то есть: [math]Reg \subset P[/math].
Доказательство:
[math]\triangleright[/math]

[math]Reg \subset TS(n, 1) \subset P[/math]

Замечание. [math]TS[/math] — ограничение и по времени и по памяти.
[math]\triangleleft[/math]

Соотношение классов CFL и P

Теорема:
Класс контекстно-свободных языков входит в класс [math]P[/math], то есть: [math]CFL \subset P[/math].
Доказательство:
[math]\triangleright[/math]

[math]CFL \subset TS(n^3, n^2) \subset P[/math]

Первое включение выполняется благодаря существованию алгоритма Эрли.
[math]\triangleleft[/math]

Примеры задач и языков из P

Класс задач, разрешимых за полиномиальное время достаточно широк, вот несколько его представителей:

  • определение связности графов;
  • вычисление наибольшего общего делителя;
  • задача линейного программирования;
  • проверка простоты числа.[2]


По теореме о временной иерархии существуют и задачи не из [math]P[/math].

Задача равенства P и NP

Одним из центральных вопросов теории сложности является вопрос о равенстве классов [math]P[/math] и NP, не разрешенный по сей день.

Легко показать, что, по определению [math]P[/math], [math] P \subset NP[/math], так как для любой задачи класса [math]P[/math] существует соответствующая ДМТ, которая является частным случаем НМТ, а значит задача, по определению, будет входить в класс [math]NP[/math].

Ссылки