Абелева группа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Перенаправление на Группа#Абелева группа)
 
Строка 1: Строка 1:
#REDIRECT [[Группа#Абелева группа]]
+
== Абелева группа ==
 +
{{Определение
 +
|definition=
 +
Группа <tex>G</tex> называется '''абелевой''', если ее операция коммутативна: для любых <tex>a,b\in G</tex> выполнено <tex>a\cdot b = b\cdot a</tex>. Абелевы группы иногда называют '''аддитивными''', обозначая групповую операцию как <tex>a+b</tex>, обратный элемент как <tex>-a</tex>, нейтральный как <tex>0</tex>. При этом запись <tex>a-b</tex> понимают как <tex>a+(-b)</tex>.
 +
}}
 +
 
 +
Примером абелевой (аддитивной) группы является группа вещественных чисел с операцией сложения. Примером неабелевой {{---}} группа обратимых матриц с операцией обычного матричного умножения.

Версия 12:33, 30 июня 2010

Абелева группа

Определение:
Группа [math]G[/math] называется абелевой, если ее операция коммутативна: для любых [math]a,b\in G[/math] выполнено [math]a\cdot b = b\cdot a[/math]. Абелевы группы иногда называют аддитивными, обозначая групповую операцию как [math]a+b[/math], обратный элемент как [math]-a[/math], нейтральный как [math]0[/math]. При этом запись [math]a-b[/math] понимают как [math]a+(-b)[/math].


Примером абелевой (аддитивной) группы является группа вещественных чисел с операцией сложения. Примером неабелевой — группа обратимых матриц с операцией обычного матричного умножения.