Регулярное представление группы — различия между версиями
Proshev (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
Рассмотрим конечную группу <tex>G</tex>, <tex>\vert G\vert=n</tex>. Занумеруем элементы: <tex>g_1,g_2,...,g_n</tex>. | Рассмотрим конечную группу <tex>G</tex>, <tex>\vert G\vert=n</tex>. Занумеруем элементы: <tex>g_1,g_2,...,g_n</tex>. | ||
Рассмотрим преобразование всех элементов группы под действием какого-то одного: | Рассмотрим преобразование всех элементов группы под действием какого-то одного: | ||
Строка 14: | Строка 9: | ||
[[Категория: Теория групп]] | [[Категория: Теория групп]] | ||
+ | |||
+ | [[Категория: В разработке]] |
Версия 23:12, 17 января 2012
Рассмотрим конечную группу
, . Занумеруем элементы: . Рассмотрим преобразование всех элементов группы под действием какого-то одного:
Это отображение, очевидно, сюръективно (прообразом элемента
служит ), инъективно( ), а значит, и биективно. Иными словами, оно является перестановкой.Определим отображение
. При этом рассматривается как перестановка. Очевидно, что это отображение является гомоморфизмом: . Раз образ гомоморфизма является подгруппой, то верно утверждение: любая конечная группа изоморфна(для этого надо еще упомянуть, что различным элементам группы сопоставляются различные перестановки - в группе не бывает "двойников", которые действуют одинаково на все элементы - по крайней мере, они отличаются действием на нейтральный элемент) некоторой подгруппе достаточно большой симметрической группы. Такое представление конечной группы подгруппой перестановок называется регулярным представлением.