Сортировка подсчётом — различия между версиями
м (→Обобщение на произвольный целочисленный диапазон) |
Nechaev (обсуждение | вклад) (→Реализация) |
||
Строка 24: | Строка 24: | ||
==== Реализация ==== | ==== Реализация ==== | ||
− | В этом варианте помимо входного массива <tex>A</tex> потребуется два вспомогательных массива — <tex>C[0..k - 1]</tex> для счётчика и <tex>B[0..n - 1]</tex> для отсортированного массива. Сначала следует заполнить массив <tex>C</tex> нулями, и | + | В этом варианте помимо входного массива <tex>A</tex> потребуется два вспомогательных массива — <tex>C[0..k - 1]</tex> для счётчика и <tex>B[0..n - 1]</tex> для отсортированного массива. Сначала следует заполнить массив <tex>C</tex> нулями, и, проходя по массиву <tex>A</tex>, записываем сколько у нас есть чисел равных <tex>A[i]</tex> в массив <tex>C</tex> (строки 1 - 4). Далее подсчитывается число элементов меньше или равных текущему (строки 5 - 6). На последнем шаге алгоритма читается входной массив с конца, а в массив <tex>B</tex> записываются элементы на те позиции, где они должны стоять; эта информация хранится в массиве <tex>C</tex> (строки 7 - 9). Алгоритм устойчив. Устойчивость может потребоваться при [[Сортировка_подсчетом_сложных_объектов|сортировке сложных структур данных]]. |
<code> | <code> | ||
StableCountingSort | StableCountingSort | ||
− | + | for number = 0 to k - 1 | |
− | + | C[number] = 0; | |
− | + | for i = 0 to length[A] - 1 | |
− | + | C[A[i]] = C[A[i]] + 1; | |
− | + | for number = 1 to k - 1 | |
− | + | C[j] = C[j] + C[j - 1]; | |
− | + | for i = length[A] - 1 to 0 | |
− | + | B[C[A[i]]] = A[i]; | |
− | + | C[A[i]] = C[A[i]] - 1; | |
</code> | </code> | ||
Версия 10:15, 12 июня 2012
Сортировка подсчётом — алгоритм сортировки целых чисел в диапазоне от
до некоторой константы , работающий за линейное время.Содержание
Простой алгоритм
Это простейший вариант алгоритма. Создать вспомогательный массив
SimpleCountingSort for number = 0 to k - 1 C[number] = 0; for i = 0 to length[A] - 1 C[A[i]] = C[A[i]] + 1; pos = 0; for number = 0 to k - 1 for i = 0 to C[j] - 1 A[pos] = number; pos = pos + 1;
Устойчивый алгоритм
Идея
Основная идея состоит в том, чтобы для каждого элемента входного массива подсчитать количество элементов, меньших данного. Эта информация будет указывать на позиции элементов в отсортированном массиве. Например, если для элемента
количество таких элементов будет , то будет занимать -ю позицию в отсортированном массиве. Если элементы могут иметь одинаковые значения, то необходимо модифицировать алгоритм, так как нельзя разместить все такие элементы в одну позицию.Реализация
В этом варианте помимо входного массива сортировке сложных структур данных.
StableCountingSort for number = 0 to k - 1 C[number] = 0; for i = 0 to length[A] - 1 C[A[i]] = C[A[i]] + 1; for number = 1 to k - 1 C[j] = C[j] + C[j - 1]; for i = length[A] - 1 to 0 B[C[A[i]]] = A[i]; C[A[i]] = C[A[i]] - 1;
Обобщение на произвольный целочисленный диапазон
Если диапазон значений (минимимум и максимум) заранее не известен, можно найти их с помощью линейного поиска, что не повлияет на асимптотику алгоритма. При работе с массивом
из необходимо вычитать минимум, а при обратной записи прибавлять.Анализ
В первом алгоритме первые два цикла работают за
и , соответственно; двойной цикл за . Во втором алгоритме циклы занимают , , и , соответственно. Итого оба алгоритма имеют линейную временную трудоёмкость . Используемая память в первом алгоритме равна , а во втором .Использование сортировки подсчётом целесообразно, когда диапазон возможных значений входных данных достаточно мал по сравнению с количеством элементов в сортируемом множестве, например, если
и все элементы натуральные числа меньшие , то время работы алгоритма равно . Эффективность алгоритма падает, когда необходимо сортировать различные элементы, попавшие в одну ячейку.Источники
- Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. «Алгоритмы. Построение и анализ» — «Вильямс», 2011 г. — 1296 стр. — ISBN 978-5-8459-0857-5, 5-8459-0857-4, 0-07-013151-1
- Сортировка подсчетом — Википедия