Несогласованные поддеревья. Реализация массового обновления — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Псевдокод в общем виде)
Строка 18: Строка 18:
 
Таким образом необходимо во-первых не забыть раздать детям несогласованность, во-вторых вызвать функцию от детей и, в-третьих, пересчитать свое значение. Очень важно выполнить все три пункта.
 
Таким образом необходимо во-первых не забыть раздать детям несогласованность, во-вторых вызвать функцию от детей и, в-третьих, пересчитать свое значение. Очень важно выполнить все три пункта.
  
==Пример==
 
 
Рассмотрим массовые операции на отрезке на примере задачи "Прибавление на отрезке". При этом мы должны отвечать на запрос минимума на отрезке.
 
 
Следуя вышеописанному алгоритму будем в каждой вершине хранить минимум на текущем отрезке и несогласованность {{---}} сколько необходимо прибавить ко всем числам этого отрезка(соответственно при запросе минимума истинный минимум на отрезке при корректной несогласованности {{---}} сумма несогласованности и значения в вершине). При этом не забудем выполнять "проталкивание" несогласованности и делать обновление минимума на текущем отрезке.
 
 
Ниже приведен код данного алгоритма.
 
 
==Псевдокод==
 
Используется классическая реализация дерева отрезка с полуинтервалами.
 
 
Пусть в узлах дерева хранятся структуры из четырех полей:
 
* <tex>left</tex> {{---}} левая граница полуинтервала, за который "отвечает" текущая вершина.
 
* <tex>right</tex> {{---}} правая граница этого полуинтервала.
 
* <tex> min</tex> {{---}} минимум на полуинтервале.
 
* <tex> d</tex> {{---}} несогласованность.
 
 
    // Процедура "проталкивания" несогласованности детям
 
void push(int node) {
 
        tree[2 * node + 1].d += tree[node].d;
 
        tree[2 * node + 2].d += tree[node].d;
 
        tree[node].d = 0;
 
}
 
 
int get_min(int node, int a, int b) {
 
    // node - текущая вершина, a и b - границы запроса
 
        l = tree[node].left;
 
        r = tree[node].right;
 
        if  [l, r)<tex>\bigcap </tex>[a, b) == <tex> \varnothing</tex>
 
            return <tex>\infty</tex>;
 
        if [l, r) == [a, b)
 
            return tree[node].min + tree[node].d;
 
        push(node); 
 
        int m = (l + r) / 2;
 
        int ans = min(get_min (node * 2 + 1, a, min(b, m)),
 
                get_min (node * 2 + 2, max(a, m), b)));
 
    // Пересчитываем свое значение
 
        tree[node].min = min(tree[2 * node + 1].min + tree[2 * node + 1].d,
 
                          tree[2 * node + 2].min + tree[2 * node + 2].d);
 
        return ans;
 
}
 
 
 
void update(int node, int a, int b, int val) {
 
    // val - значение, на которое нужно увеличить отрезок
 
        l = tree[node].left;
 
        r = tree[node].right;
 
        if  [l, r)<tex>\bigcap </tex>[a, b) == <tex> \varnothing</tex>
 
            return;
 
        if [l, r) == [a, b)
 
            tree[node].d += val;
 
            return;
 
 
        push(node);
 
    // Вызываем обновление детей
 
        update(2 * node + 1, a, b, val);
 
        update(2 * node + 2, a, b, val);
 
        tree[node].min = min(tree[2 * node + 1].min + tree[2 * node + 1].d,
 
                          tree[2 * node + 2].min + tree[2 * node + 2].d);
 
}
 
  
 
==Псевдокод в общем виде==
 
==Псевдокод в общем виде==

Версия 23:09, 1 июня 2012

Дерево отрезков позволяет осуществлять так называемые массовые операций, то есть данная структура позволяет выполнять операций с несколькими подряд идущими элементами. Причем время работы, как и при других запросах, равно [math]O(\log n)[/math].

Несогласованные поддеревья

Сперва рассмотрим так называемые несогласованные поддеревья.

В несогласованном поддереве дерева отрезков в вершинах хранятся не истинные значения сумм (по операции [math]\oplus[/math]) на отрезках, однако гарантируется, что на запрос они отвечают верно. При этом в корне поддерева, которому соответствует отрезок [math]a_i..a_j[/math] хранится несогласованность [math]d[/math]. Если в вершине хранится истинное значение суммы, то [math]d = \perp[/math] — нейтральный элемент относительно операции [math]\odot[/math] (например 0 для прибавления). Для реализации вторая операция должна быть ассоциативной, и операций должны удовлетворять свойству дистрибутивности:

  1. [math]a \odot (b \odot c) = (a \odot b) \odot c[/math]
  2. [math](a \oplus b) \odot c = (a \odot c) \oplus (b \odot c)[/math]
  3. [math]c \odot (a \oplus b) = (c \odot a) \oplus (c \odot b)[/math]

Массовое обновление

Рассмотрим в общем виде реализацию массовой операций на отрезке. Пусть необходимо отвечать запросы относительно операций [math]\oplus[/math], а запрос массового обновления идет по операций [math]\odot[/math].

Для эффективной реализаций будем использовать описанную выше структуру — несогласованные поддеревья. В каждой вершине, помимо непосредственно результата выполнения операций [math]\oplus[/math], храним несогласованность — величина, с которой нужно выполнить операцию [math]\odot[/math] для всех элементов текущего отрезка. Тем самым мы сможем обрабатывать запрос массового обновления на любом подотрезке эффективно, вместо того чтобы изменять все [math]O(N)[/math] значений. Как известно из определения несогласованных поддеревьев, в текущий момент времени не в каждой вершине дерева хранится истинное значение, однако когда мы обращаемся к текущему элементу мы работаем с верными данными. Это обеспечивается так называемым "проталкиванием" несогласованности детям при каждом обращений к текущей вершине. При этом после обращения к вершине необходимо пересчитать значение по операций [math]\oplus[/math], так как значение в детях могло измениться.

Таким образом необходимо во-первых не забыть раздать детям несогласованность, во-вторых вызвать функцию от детей и, в-третьих, пересчитать свое значение. Очень важно выполнить все три пункта.


Псевдокод в общем виде

Пусть поступают запросы двух типов — поиск элемента, соответствующего операций [math]\oplus[/math], и массовое обновление на отрезке относительно операций [math]\odot[/math]. Используется классическая реализация дерева отрезка с полуинтервалами.

Пусть в узлах дерева хранятся структуры из четырех полей:

  • [math]left[/math] — левая граница полуинтервала, за который "отвечает" текущая вершина.
  • [math]right[/math] — правая граница этого полуинтервала.
  • [math] ans[/math] — сумма на отрезке по операций [math]\oplus[/math].
  • [math] d[/math] — несогласованность.
   // Процедура "проталкивания" несогласованности детям
void push(int node) {
       tree[2 * node + 1].d = tree[2 * node + 1].d [math]\odot[/math] tree[node].d;
       tree[2 * node + 2].d = tree[2 * node + 2].d [math]\odot[/math] tree[node].d;
       tree[node].d = [math]\perp[/math]; // Нейтральный элемент
} 
   // Процедура ответа на множественные запросы.  
void update(int node, int a, int b, int val) {
   // val - значение, которое поступило в качестве параметра на запрос
       l = tree[node].left;
       r = tree[node].right; 
       if  [l, r)[math]\bigcap [/math][a, b) == [math] \varnothing[/math]
           return;
       if [l, r) == [a, b)
           tree[node].d = tree[node].d [math]\odot[/math] val;
           return;

       push(node); 
   // Вызываем обновление детей
       update(2 * node + 1, a, b, val);
       update(2 * node + 2, a, b, val);
    // Пересчитываем свое значение
       tree[node].ans = (tree[2 * node + 1].ans [math]\odot[/math] tree[2 * node + 1].d) [math]\oplus[/math] 
                         (tree[2 * node + 2].ans [math]\odot[/math] tree[2 * node + 2].d);
}
   // Функция ответа на запросы
int get_ans(int node, int a, int b) {
   // node - текущая вершина, a и b - границы запроса
       l = tree[node].left;
       r = tree[node].right; 
       if  [l, r)[math]\bigcap [/math][a, b) == [math] \varnothing[/math]
           return [math]\perp[/math];
       if [l, r) == [a, b)
           return tree[node].ans [math]\odot[/math] tree[node].d;
       push(node);   
       int m = (l + r) / 2;
       int ans = get_ans (node * 2 + 1, a, ans(b, m)) [math]\oplus[/math]  
                get_ans (node * 2 + 2, max(a, m), b));
       tree[node].ans = (tree[2 * node + 1].ans [math]\odot[/math] tree[2 * node + 1].d) [math]\oplus[/math] 
                         (tree[2 * node + 2].ans [math]\odot[/math] tree[2 * node + 2].d);
       return ans;
}

Ссылки

MAXimal :: algo :: Дерево отрезков

Дерево отрезков — Википедия