Сортировка кучей — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
'''Сортировка кучей''', '''пирамидальная сортировка''' (англ. '''Heapsort''') {{---}} алгоритм сортировки, использующий структуру данных [[Двоичная куча|двоичная куча]]. Это нестабильный алгоритм сортировки с гарантированным временем работы <tex>\Theta(n\log{n})</tex> , где <tex>n</tex> {{---}} количество элементов для сортировки, и использующий <tex>O(1)</tex> дополнительной памяти.
+
'''Сортировка кучей''', '''пирамидальная сортировка''' (англ. '''Heapsort''') {{---}} алгоритм сортировки, использующий структуру данных [[Двоичная куча|двоичная куча]]. Это нестабильный алгоритм сортировки с временем работы <tex>O(n\log{n})</tex> , где <tex>n</tex> {{---}} количество элементов для сортировки, и использующий <tex>O(1)</tex> дополнительной памяти.
  
 
== Алгоритм ==
 
== Алгоритм ==
Необходимо отсортировать массив <tex>A</tex>, размером <tex>n</tex>. Построим на базе этого массива за <tex>O(n)</tex> невозрастающую кучу. Так как по свойству кучи максимальный элемент находится в корне, то, поменявшись его местами с <tex>A[n - 1]</tex>, он встанет на свое место. Далее вызовем процедуру '''sift_down(0)''', предварительно уменьшив <tex>heap\_size</tex> на <tex>1</tex>. Она за <tex>O(\log{n})</tex> просеет <tex>A[0]</tex> на нужное место и сформирует новую кучу (так как мы уменьшили ее размер, то куча располагается с <tex>A[0]</tex> по <tex>A[n - 2]</tex>, а элемент <tex>A[n-1]</tex> находится на своем месте). Повторим эту процедуру для новой кучи, только корень будет менять местами не с <tex>A[n - 1]</tex>, а с <tex>A[n-2]</tex>. Проделав аналогичные операции <tex>n - 1</tex>, мы получим отсортированный массив.
+
Необходимо отсортировать массив <tex>A</tex>, размером <tex>n</tex>. Построим на базе этого массива за <tex>O(n)</tex> невозрастающую кучу. Так как по свойству кучи максимальный элемент находится в корне, то, поменявшись его местами с <tex>A[n - 1]</tex>, он встанет на свое место. Далее вызовем процедуру '''sift_down(0)''', предварительно уменьшив <tex>heap\_size</tex> на <tex>1</tex>. Она за <tex>O(\log{n})</tex> просеет <tex>A[0]</tex> на нужное место и сформирует новую кучу (так как мы уменьшили ее размер, то куча располагается с <tex>A[0]</tex> по <tex>A[n - 2]</tex>, а элемент <tex>A[n-1]</tex> находится на своем месте). Повторим эту процедуру для новой кучи, только корень будет менять местами не с <tex>A[n - 1]</tex>, а с <tex>A[n-2]</tex>. Делая аналогичные действия, пока <tex>heap_size</tex> не станет равен <tex>1</tex>, мы будем ставить наибольшее из оставшихся чисел в конец не отсортированной части. Очевидно, что таким образом, мы получим отсортированный массив.
  
 
== Реализация ==
 
== Реализация ==
 +
<tex>A</tex> {{---}} массив, который необходимо отсортировать; <tex>n</tex> {{---}} количество элементов в нем; '''build_heap(A)''' - процедура, которая строит из передаваемого массива невозрастающую кучу в этом же массиве; '''sift_down(A, i, len)''' {{---}} процедура, которая просеивает вниз элемент <tex>A[i]</tex> в куче из <tex>len</tex> элементов, находящихся в начале массива <tex>A</tex>.
 
<pre>
 
<pre>
 
heapsort(A)
 
heapsort(A)
Строка 12: Строка 13:
 
     swap(A[0], A[n - 1 - i]);
 
     swap(A[0], A[n - 1 - i]);
 
     heap_size--;
 
     heap_size--;
     sift_down(0, heap_size);
+
     sift_down(A, 0, heap_size);
 
</pre>
 
</pre>
 +
 +
== Сложность ==
 +
Операция '''sift_down''' работает за <tex>O(\log{n})</tex>. Всего цикл выполняется <tex>n - 1</tex> раз. Таким образом сложность сортировки кучей является <tex>O(n\log{n})</tex>.
 +
 +
 
== Пример ==
 
== Пример ==
  
Строка 60: Строка 66:
  
 
== Ссылки ==  
 
== Ссылки ==  
*[http://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B0_%D0%B2%D1%8B%D0%B1%D0%BE%D1%80%D0%BE%D0%BC Сортировка выбором в русской википедии]
+
*[http://ru.wikipedia.org/wiki/%D0%9F%D0%B8%D1%80%D0%B0%D0%BC%D0%B8%D0%B4%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%81%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B0 Сортировка кучей в русской википедии]
 +
*[http://en.wikipedia.org/wiki/Heapsort Сортировка кучей в английской википедии]
  
 
== Литература ==
 
== Литература ==

Версия 08:09, 3 июня 2012

Сортировка кучей, пирамидальная сортировка (англ. Heapsort) — алгоритм сортировки, использующий структуру данных двоичная куча. Это нестабильный алгоритм сортировки с временем работы [math]O(n\log{n})[/math] , где [math]n[/math] — количество элементов для сортировки, и использующий [math]O(1)[/math] дополнительной памяти.

Алгоритм

Необходимо отсортировать массив [math]A[/math], размером [math]n[/math]. Построим на базе этого массива за [math]O(n)[/math] невозрастающую кучу. Так как по свойству кучи максимальный элемент находится в корне, то, поменявшись его местами с [math]A[n - 1][/math], он встанет на свое место. Далее вызовем процедуру sift_down(0), предварительно уменьшив [math]heap\_size[/math] на [math]1[/math]. Она за [math]O(\log{n})[/math] просеет [math]A[0][/math] на нужное место и сформирует новую кучу (так как мы уменьшили ее размер, то куча располагается с [math]A[0][/math] по [math]A[n - 2][/math], а элемент [math]A[n-1][/math] находится на своем месте). Повторим эту процедуру для новой кучи, только корень будет менять местами не с [math]A[n - 1][/math], а с [math]A[n-2][/math]. Делая аналогичные действия, пока [math]heap_size[/math] не станет равен [math]1[/math], мы будем ставить наибольшее из оставшихся чисел в конец не отсортированной части. Очевидно, что таким образом, мы получим отсортированный массив.

Реализация

[math]A[/math] — массив, который необходимо отсортировать; [math]n[/math] — количество элементов в нем; build_heap(A) - процедура, которая строит из передаваемого массива невозрастающую кучу в этом же массиве; sift_down(A, i, len) — процедура, которая просеивает вниз элемент [math]A[i][/math] в куче из [math]len[/math] элементов, находящихся в начале массива [math]A[/math].

heapsort(A)
  build_heap(A);
  heap_size = A.size;
  for i:= 0 to n - 2
    swap(A[0], A[n - 1 - i]);
    heap_size--;
    sift_down(A, 0, heap_size);

Сложность

Операция sift_down работает за [math]O(\log{n})[/math]. Всего цикл выполняется [math]n - 1[/math] раз. Таким образом сложность сортировки кучей является [math]O(n\log{n})[/math].


Пример

Пусть дана последовательность из [math]5[/math] элементов [math]5, 4, 1, 2, 3[/math].

Массив Описание шага
Первый проход (текущий массив начинается с первого элемента)
5 4 1 2 3 Находим первый минимальный элемент — 1
1 4 5 2 3 Меняем минимальный и первый элементы местами
Второй проход (текущий массив начинается со следующего элемента)
1 5 4 2 3 Находим следующий минимальный элемент — 2
1 2 4 5 3 Меняем минимальный и второй элементы местами
Третий проход (текущий массив начинается со следующего элемента)
1 2 4 5 3 Находим следующий минимальный элемент — 3
1 2 3 5 4 Меняем минимальный и третий элементы местами
Четвертый проход (текущий массив начинается со следующего элемента)
1 2 3 5 4 Находим следующий минимальный элемент — 4
1 2 3 4 5 Меняем минимальный и четвертый элементы местами
1 2 3 4 5 Массив отсортирован


Ссылки

Литература

  • Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4