Сортировка кучей — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 21: Строка 21:
  
 
== Пример ==
 
== Пример ==
 +
'''''РАЗДЕЛ В РАЗРАБОТКЕ'''''
 +
  
 
Пусть дана последовательность из <tex>5</tex> элементов <tex>5, 4, 1, 2, 3</tex>.
 
Пусть дана последовательность из <tex>5</tex> элементов <tex>5, 4, 1, 2, 3</tex>.

Версия 08:18, 3 июня 2012

Сортировка кучей, пирамидальная сортировка (англ. Heapsort) — алгоритм сортировки, использующий структуру данных двоичная куча. Это нестабильный алгоритм сортировки с временем работы [math]O(n\log{n})[/math] , где [math]n[/math] — количество элементов для сортировки, и использующий [math]O(1)[/math] дополнительной памяти.

Алгоритм

Необходимо отсортировать массив [math]A[/math], размером [math]n[/math]. Построим на базе этого массива за [math]O(n)[/math] невозрастающую кучу. Так как по свойству кучи максимальный элемент находится в корне, то, поменявшись его местами с [math]A[n - 1][/math], он встанет на свое место. Далее вызовем процедуру sift_down(0), предварительно уменьшив [math]heap\_size[/math] на [math]1[/math]. Она за [math]O(\log{n})[/math] просеет [math]A[0][/math] на нужное место и сформирует новую кучу (так как мы уменьшили ее размер, то куча располагается с [math]A[0][/math] по [math]A[n - 2][/math], а элемент [math]A[n-1][/math] находится на своем месте). Повторим эту процедуру для новой кучи, только корень будет менять местами не с [math]A[n - 1][/math], а с [math]A[n-2][/math]. Делая аналогичные действия, пока [math]heap\_size[/math] не станет равен [math]1[/math], мы будем ставить наибольшее из оставшихся чисел в конец не отсортированной части. Очевидно, что таким образом, мы получим отсортированный массив.

Реализация

[math]A[/math] — массив, который необходимо отсортировать; [math]n[/math] — количество элементов в нем; build_heap(A) - процедура, которая строит из передаваемого массива невозрастающую кучу в этом же массиве; sift_down(A, i, len) — процедура, которая просеивает вниз элемент [math]A[i][/math] в куче из [math]len[/math] элементов, находящихся в начале массива [math]A[/math].

heapsort(A)
  build_heap(A);
  heap_size = A.size;
  for i = 0 to n - 2
    swap(A[0], A[n - 1 - i]);
    heap_size--;
    sift_down(A, 0, heap_size);

Сложность

Операция sift_down работает за [math]O(\log{n})[/math]. Всего цикл выполняется [math](n - 1)[/math] раз. Таким образом сложность сортировки кучей является [math]O(n\log{n})[/math].


Пример

РАЗДЕЛ В РАЗРАБОТКЕ


Пусть дана последовательность из [math]5[/math] элементов [math]5, 4, 1, 2, 3[/math].

Массив Описание шага
Первый проход (текущий массив начинается с первого элемента)
5 4 1 2 3 Находим первый минимальный элемент — 1
1 4 5 2 3 Меняем минимальный и первый элементы местами
Второй проход (текущий массив начинается со следующего элемента)
1 5 4 2 3 Находим следующий минимальный элемент — 2
1 2 4 5 3 Меняем минимальный и второй элементы местами
Третий проход (текущий массив начинается со следующего элемента)
1 2 4 5 3 Находим следующий минимальный элемент — 3
1 2 3 5 4 Меняем минимальный и третий элементы местами
Четвертый проход (текущий массив начинается со следующего элемента)
1 2 3 5 4 Находим следующий минимальный элемент — 4
1 2 3 4 5 Меняем минимальный и четвертый элементы местами
1 2 3 4 5 Массив отсортирован


Ссылки

Литература

  • Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4