Уравнение Пелля — различия между версиями
Строка 30: | Строка 30: | ||
Рассмотрим остатки от деления на <tex>~|c|</tex> чисел <tex> a_n, b_n</tex>. Количество остатков конечно, а пар бесконечно, поэтому существуют две различные пары <tex> (a_1, b_1),(a_2,b_2)</tex> такие, что <tex>a_1^2-db_1^2=c=a_2^2-вb_2^2</tex> и <tex> a_1\equiv a_2(mod~|c|)</tex>, <tex>b_1\equiv b_2(mod~|c|)</tex>. | Рассмотрим остатки от деления на <tex>~|c|</tex> чисел <tex> a_n, b_n</tex>. Количество остатков конечно, а пар бесконечно, поэтому существуют две различные пары <tex> (a_1, b_1),(a_2,b_2)</tex> такие, что <tex>a_1^2-db_1^2=c=a_2^2-вb_2^2</tex> и <tex> a_1\equiv a_2(mod~|c|)</tex>, <tex>b_1\equiv b_2(mod~|c|)</tex>. | ||
− | <tex>\frac{a_2+b_2\sqrt{d}}{a_1+b_1\sqrt{d}}=\frac{(a_1-b_1\sqrt{d})(a_2+b_2\sqrt{d})}{a_1^2-db_1^2}=\frac{(a_1a_2-db_1b_2)+(a_1b_2-a_2b_1)\sqrt{d}}{c}</tex>. Поскольку <tex>a_1a_2-db_1b_2\equiv a_1^2-b_1^2d\equiv c\equiv 0(mod~|c|)</tex> и <tex>a_1b_2-a_2b_1\equiv a_1b_1-a_1b_1 \equiv 0(mod~|c|)</tex>, то числа <tex> x = \frac{a_1a_2-b_1b_2d}{c}</tex> и <tex>y = \frac{a_1b_2-a_2b_1 | + | <tex>\frac{a_2+b_2\sqrt{d}}{a_1+b_1\sqrt{d}}=\frac{(a_1-b_1\sqrt{d})(a_2+b_2\sqrt{d})}{a_1^2-db_1^2}=\frac{(a_1a_2-db_1b_2)+(a_1b_2-a_2b_1)\sqrt{d}}{c}</tex>. Поскольку <tex>a_1a_2-db_1b_2\equiv a_1^2-b_1^2d\equiv c\equiv 0(mod~|c|)</tex> и <tex>a_1b_2-a_2b_1\equiv a_1b_1-a_1b_1 \equiv 0(mod~|c|)</tex>, то числа <tex> x = \frac{a_1a_2-b_1b_2d}{c}</tex> и <tex>y = \frac{a_1b_2-a_2b_1}{c}</tex> целые. |
}} | }} |
Версия 17:44, 30 июня 2010
Эта статья находится в разработке!
Определение: |
Уравнение вида | , где не является квадратом, называется уравнением Пелля
Теорема: |
Любое решение уравнения Пелля - подходящая дробь для . |
Доказательство: |
Рассматриваем , остальные корни получатся из симметрии. Так как , то . . Следовательно . Разделим обе части на получим : . Значит по теореме о приближении является подходящей дробью для . |
Лемма: |
Для любого вещественного числа и натурального существует такое целое число и натуральное число , что и |
Доказательство: |
Рассмотрим числа 0 и 1, а также дробные части чисел Если . Если все расстояния между этими числами было больше , то приходим к противоречию. Значит какое-то из расстояний не превосходит . , где , то . Так что берём и . Два других случая очевидны. |
Теорема: |
Уравнение Пелля имеет нетривиальное решение. |
Доказательство: |
Положим . Для любого натурального в силу леммы существуют такие натуральные числа и , что и . Далее : . Поэтому принимает конечное число значений. Но принимает бесконечное число значений. Поэтому существует такое число , что для него есть бесконечно много пар , таких что .Рассмотрим остатки от деления на чисел . Количество остатков конечно, а пар бесконечно, поэтому существуют две различные пары такие, что и , . . Поскольку и , то числа и целые. |