Теорема Лаутемана — различия между версиями
Строка 1: | Строка 1: | ||
+ | {{Лемма | ||
+ | | statement = <tex>\mathrm{BPP} = \mathrm{coBPP}</tex> | ||
+ | | proof = | ||
+ | Рассмотрим <tex>L \in \mathrm{BPP}</tex>. Существует такая программа <tex>p</tex>, что <tex>P(p(x) = [x \in L]) \geqslant \frac{2}{3}</tex>. Покажем, что <tex>\overline{L} \in \mathrm{BPP}</tex>. Для этого рассмотрим следующую программу: | ||
+ | <tex>p'(x)</tex> <tex>\{</tex> | ||
+ | <tex>return (1 - p(x));</tex> | ||
+ | <tex>\}</tex> | ||
+ | <tex>P(p'(x) = [x \in \overline{L}]) = P(p(x) = [x \in L]) \geqslant \frac{2}{3}</tex>. Таким образом <tex>\overline{L} \in \mathrm{BPP}</tex>. | ||
+ | #<tex>L \in \mathrm{BPP} \Rightarrow \overline{L} \in \mathrm{BPP} \Rightarrow L = \overline{\overline{L}} \in \mathrm{coBPP}</tex>. Получаем <tex>\mathrm{BPP} \subset \mathrm{coBPP}</tex>. | ||
+ | #<tex>L \in \mathrm{coBPP} \Rightarrow \overline{L} \in \mathrm{BPP} \Rightarrow L = \overline{\overline{L}} \in \mathrm{BPP}</tex>. Получаем <tex>\mathrm{coBPP} \subset \mathrm{BPP}</tex>. | ||
+ | }} | ||
+ | |||
==Теорема== | ==Теорема== | ||
{{ Теорема | {{ Теорема |
Версия 00:28, 4 июня 2012
Лемма: |
Доказательство: |
Рассмотрим . Существует такая программа , что . Покажем, что . Для этого рассмотрим следующую программу:. Таким образом .
|
Теорема
Теорема (Лаутеман): |
Доказательство: |
Из того, что класс замкнут относительно дополнения и , следует, что достаточно доказать включение .можно определить как множество таких языков , что существует «много» таких вероятностных лент , что . — множество таких языков , что существует такой , что для любого . Таким образом, необходимо уметь записывать «существует много» с помощью кванторов . Рассмотрим язык для некоторого . Определим операцию над словами из этого языка как побитовое исключающее или.Назовем , содержащееся в , -большим, если существует такой набор , что . Иначе будем называть — -маленьким.Если , то является -маленьким. Найдем достаточное условие, при котором является -большим.Воспользуемся утверждением, что если вероятность , то существует из . Для этого выберем случайно набор .. Если , то существует такой набор , что , то есть — -большое.Рассмотрим язык вероятностная машина Тьюринга , что , где некоторый полином, который будет определен позднее. Пусть использует бит случайной ленты. . Из того, что , следует, что существует такаяЗафиксируем . Возьмем . Рассмотрим множество , являющееся событием в вероятностном пространстве , где . Подберем теперь и так, чтобы — -большое.Если , то . Значит . Чтобы в этом случае было бы -большим потребуем .Если , то . Чтобы в этом случае было бы -маленьким потребуем .Выберем Таким образом, так, чтобы и . Получаем , то есть — -большое. : , . Получаем , и . |