Теорема Лаутемана — различия между версиями
Строка 35: | Строка 35: | ||
Рассмотрим язык <tex>L \in \mathrm{BPP}</tex>. Из того, что <tex>\mathrm{BPP} = \mathrm{BPP_{strong}}</tex>, следует, что существует такая [[Вероятностные вычисления. Вероятностная машина Тьюринга | вероятностная машина Тьюринга]] <tex>M</tex>, что <tex>P(M(x) = [x \in L]) \geqslant 1 - \frac{1}{2^{p(n)}}</tex>, где <tex>p(n)</tex> некоторый полином, который будет определен позднее. Пусть <tex>M</tex> использует <tex>r(n)</tex> бит случайной ленты. | Рассмотрим язык <tex>L \in \mathrm{BPP}</tex>. Из того, что <tex>\mathrm{BPP} = \mathrm{BPP_{strong}}</tex>, следует, что существует такая [[Вероятностные вычисления. Вероятностная машина Тьюринга | вероятностная машина Тьюринга]] <tex>M</tex>, что <tex>P(M(x) = [x \in L]) \geqslant 1 - \frac{1}{2^{p(n)}}</tex>, где <tex>p(n)</tex> некоторый полином, который будет определен позднее. Пусть <tex>M</tex> использует <tex>r(n)</tex> бит случайной ленты. | ||
− | Зафиксируем <tex>x</tex>. Возьмем <tex>G = \{0, 1\}^{r(n)}</tex>. Рассмотрим множество <tex>A_x = \{r \in G \bigm| M(x,r) = 1\} | + | Зафиксируем <tex>x</tex>. Возьмем <tex>G = \{0, 1\}^{r(n)}</tex>. Рассмотрим множество <tex>A_x = \{r \in G \bigm| M(x,r) = 1\}</tex>. Подберем теперь <tex>p(n)</tex> и <tex>k</tex> так, чтобы <tex>x \in L \Leftrightarrow A_x</tex> — <tex>k</tex>-большое. |
− | Если <tex>x \in L</tex>, то <tex>P( | + | Если <tex>x \in L</tex>, то <tex>P(M(x) = 1) = \frac{|A_x|}{2^{r(n)}} \geqslant 1 - \frac{1}{2^{p(n)}} \Rightarrow |A_x| \geqslant 2^{r(n)} \left( 1 - \frac{1}{2^{p(n)}} \right)</tex>. Значит <tex>2^{r(n)} \left( 1 - \frac{|A_x|}{2^{r(n)}} \right)^k \leqslant 2^{r(n) - kp(n)}</tex>. Чтобы в этом случае <tex>A_x</tex> было бы <tex>k</tex>-большим потребуем <tex>2^{r(n) - kp(n)} < 1</tex>. |
− | Если <tex>x \not \in L</tex>, то <tex>P( | + | Если <tex>x \not \in L</tex>, то <tex>P(M(x) = 1) = \frac{|A_x|}{2^{r(n)}} \leqslant \frac{1}{2^{p(n)}} \Rightarrow |A_x| \leqslant 2^{r(n) - p(n)}</tex>. Чтобы в этом случае <tex>A_x</tex> было бы <tex>k</tex>-маленьким потребуем <tex>2^{r(n) - p(n)} < \frac{2^{r(n)}}{k}</tex>. |
Выберем <tex>p(n)</tex> так, чтобы <tex>\frac{r(n)}{p(n)} < 2^{p(n)} - 2</tex> и <tex>k = \lceil \frac{r(n)}{p(n)} \rceil + 1</tex>. Получаем <tex>\frac{r(n)}{p(n)} < k < 2^{p(n)}</tex>, то есть <tex>x \in L \Leftrightarrow A_x</tex> — <tex>k</tex>-большое. | Выберем <tex>p(n)</tex> так, чтобы <tex>\frac{r(n)}{p(n)} < 2^{p(n)} - 2</tex> и <tex>k = \lceil \frac{r(n)}{p(n)} \rceil + 1</tex>. Получаем <tex>\frac{r(n)}{p(n)} < k < 2^{p(n)}</tex>, то есть <tex>x \in L \Leftrightarrow A_x</tex> — <tex>k</tex>-большое. |
Версия 11:39, 4 июня 2012
Лемма: |
Доказательство: |
Рассмотрим . Существует такая программа , что . Покажем, что . Для этого рассмотрим следующую программу:. Таким образом .
|
Теорема
Теорема (Лаутеман): |
Доказательство: |
Из того, что класс замкнут относительно дополнения и , следует, что достаточно доказать включение .можно определить как множество таких языков , что тогда и только тогда, когда существует «много» таких вероятностных лент , что . — множество таких языков , что тогда и только тогда, когда существует такой , что для любого . Таким образом, необходимо уметь записывать «существует много» с помощью кванторов . Рассмотрим язык для некоторого . Определим операцию над словами из этого языка как побитовое исключающее или.Назовем , содержащееся в , -большим, если существует такой набор , что . Иначе будем называть — -маленьким.Если , то является -маленьким. Найдем достаточное условие, при котором является -большим.Воспользуемся утверждением, что если вероятность , то существует из . Для этого выберем случайно набор .. Если , то существует такой набор , что , то есть — -большое.Рассмотрим язык вероятностная машина Тьюринга , что , где некоторый полином, который будет определен позднее. Пусть использует бит случайной ленты. . Из того, что , следует, что существует такаяЗафиксируем . Возьмем . Рассмотрим множество . Подберем теперь и так, чтобы — -большое.Если , то . Значит . Чтобы в этом случае было бы -большим потребуем .Если , то . Чтобы в этом случае было бы -маленьким потребуем .Выберем Таким образом, так, чтобы и . Получаем , то есть — -большое. : , . Получаем , и . |