Теоретический минимум по математическому анализу за 4 семестр — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(2 Ядра Дирихле и Фейера)
(1 Определение ряда Фурье, теорема о коэффициентах тригонометрического ряда, сходящегося в L_1)
Строка 1: Строка 1:
 
= 1 Определение ряда Фурье, теорема о коэффициентах тригонометрического ряда, сходящегося в <tex>L_1</tex> =
 
= 1 Определение ряда Фурье, теорема о коэффициентах тригонометрического ряда, сходящегося в <tex>L_1</tex> =
{{TODO|t = пилим}}
+
{{Определение
 +
|definition = <tex> L_p, (p \ge 1) </tex> {{---}} совокупность <tex> 2\pi </tex>-периодических функций, суммируемых с <tex> p </tex>-й степенью на промежутке <tex> Q = [-\pi, \pi] </tex>.
 +
 
 +
То есть,
 +
<tex>L_p = \{ f | f(x + 2\pi) = f(x), \int\limits_Q |f|^p < +\infty \} </tex>.
 +
}}
 +
 
 +
{{Определение
 +
|definition = '''Тригонометрическим рядом''' называется ряд:
 +
<tex>\frac{c_0}{2} + \sum_{n=1}^\infty (c_n \cos nx + d_n \sin nx)</tex>.
 +
Если, начиная с какого-то места, <tex> c_n = d_n = 0 </tex>, то соответствующая сумма называется '''тригонометрическим полиномом'''.
 +
}}
 +
 
 +
{{Теорема
 +
|statement=
 +
Пусть тригонометрический ряд <tex> \frac {a_0}{2} + \sum\limits_{n = 1}^{+\infty} (a_n \cos nx + b_n \sin nx) </tex> сходится в <tex> L_1 </tex> и имеет суммой функцию <tex> f </tex>. Тогда для него выполняются формулы Эйлера-Фурье:
 +
 
 +
<tex> a_0 = \frac{1}{\pi} \int\limits_{Q} f,\ a_n = \frac{1}{\pi} \int\limits_{Q} f(x) \cos nx dx,\ b_n = \frac{1}{\pi} \int\limits_{Q} f(x) \sin nx dx </tex>.
 +
}}
 +
 
 +
{{Определение
 +
|definition=
 +
Пусть функция <tex> f \in L_1 </tex>. '''Ряд Фурье''' <tex> f </tex> — тригонометрический ряд, коэффициенты которого вычислены по формулам Эйлера-Фурье.
 +
}}
  
 
= 2 Ядра Дирихле и Фейера =
 
= 2 Ядра Дирихле и Фейера =

Версия 22:22, 11 июня 2012

Содержание

1 Определение ряда Фурье, теорема о коэффициентах тригонометрического ряда, сходящегося в [math]L_1[/math]

Определение:
[math] L_p, (p \ge 1) [/math] — совокупность [math] 2\pi [/math]-периодических функций, суммируемых с [math] p [/math]-й степенью на промежутке [math] Q = [-\pi, \pi] [/math].

То есть,

[math]L_p = \{ f | f(x + 2\pi) = f(x), \int\limits_Q |f|^p \lt +\infty \} [/math].


Определение:
Тригонометрическим рядом называется ряд:

[math]\frac{c_0}{2} + \sum_{n=1}^\infty (c_n \cos nx + d_n \sin nx)[/math].

Если, начиная с какого-то места, [math] c_n = d_n = 0 [/math], то соответствующая сумма называется тригонометрическим полиномом.


Теорема:
Пусть тригонометрический ряд [math] \frac {a_0}{2} + \sum\limits_{n = 1}^{+\infty} (a_n \cos nx + b_n \sin nx) [/math] сходится в [math] L_1 [/math] и имеет суммой функцию [math] f [/math]. Тогда для него выполняются формулы Эйлера-Фурье: [math] a_0 = \frac{1}{\pi} \int\limits_{Q} f,\ a_n = \frac{1}{\pi} \int\limits_{Q} f(x) \cos nx dx,\ b_n = \frac{1}{\pi} \int\limits_{Q} f(x) \sin nx dx [/math].


Определение:
Пусть функция [math] f \in L_1 [/math]. Ряд Фурье [math] f [/math] — тригонометрический ряд, коэффициенты которого вычислены по формулам Эйлера-Фурье.


2 Ядра Дирихле и Фейера

Определение:
[math]D_n(t)=\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}\cos{kt})[/math] — тригонометрический полином такого вида называется ядром Дирихле.


Определение:
[math]\Phi_n(t)=\frac{1}{n+1}\sum\limits_{k=0}^{n}D_k(t)[/math] — тригонометрический полином такого вида называется ядром Фейера.


3 Способы суммирование рядов в НП (нормированное пространство)

TODO: пилим

4 Теорема Фробениуса

TODO: пилим

5 Тауберова теорема Харди для метода средних арифметических суммирования рядов в нормированном пространстве

TODO: пилим

6 Теорема Фейера

TODO: пилим

7 Следствие о двух пределах

TODO: пилим

8 Всюду плотность множества [math] C [/math] в пространствах [math] L_p [/math]

TODO: пилим

9 Теорема Фейера в пространствах [math]L_p[/math]

TODO: пилим

10 Наилучшее приближение в НП и его свойства

TODO: пилим

11 Существование элемента наилучшего приближения

TODO: пилим

12 Обобщенная теорема Вейерштрасса

TODO: пилим

13 Лемма Римана-Лебега о коэффициентах Фурье функции из [math]L_1[/math]

TODO: пилим

14 Теорема Дини

TODO: пилим

15 Следствие о четырех пределах

TODO: пилим

16 Полная вариация функции и ее аддитивность

TODO: пилим

17 О разложении функции ограниченной вариации в разность возрастающих функций

TODO: пилим

18 У словие существования интеграла Стилтьесса

TODO: пилим

19 Интегрируемость по Стилтьессу непрерывной функции

TODO: пилим

20 Аддитивность интеграла Стилтьесса

TODO: пилим

21 Сведение интеграла Стилтьесса к интегралу Римана

TODO: пилим

22 Формула интегрирования по частям для интеграла Стилтьесса

TODO: пилим

23 Оценка коэффициентов Фурье функции ограниченной вариации

TODO: пилим

24 Теорема Жордана о сходимости ряда Фурье функции ограниченной вариации

TODO: пилим

25 Условие равномерной сходимости ряда Фурье

TODO: пилим

26 Ряды Фурье в [math]L_2[/math] : экстремальное свойство сумм Фурье, неравенство Бесселя

TODO: пилим

27 Замкнутые и полные о.н.с.

TODO: пилим

28 Равенство Парсеваля

TODO: пилим

29 Теорема Лузина-Данжуа

TODO: пилим

30 Условие абсолютной сходимости ряда Фурье функции из [math]L_2[/math]

TODO: пилим

31 Принцип локализации для рядов Фурье

TODO: пилим

32 Почленное интегрирование ряда Фурье

TODO: пилим

33 Модуль непрерывности и его свойства

TODO: пилим

34 Теорема о выпуклой мажоранте модуля непрерывности

TODO: пилим

35 Модуль непрерывности в пространстве [math] C [/math]

TODO: пилим

36 Ядро Джексона

TODO: пилим

37 Теорема Джексона

TODO: пилим

38 Следствия для [math]C^{(r)}[/math]

TODO: пилим

39 Неравенство Бернштейна для тригонометрических полиномов

TODO: пилим

40 Обратная теорема Бернштейна теории приближений

TODO: пилим

41 Явление Гиббса

TODO: пилим

42 Константа Лебега ядра Дирихле

TODO: пилим

43 Оценка отклонения сумм Фурье через константу Лебега

TODO: пилим

44 Частный интеграл Фурье

TODO: пилим

45 Признак Дини сходимости интеграла Фурье

TODO: пилим