Теорема Карпа — Липтона — различия между версиями
Shevchen (обсуждение | вклад) м |
Kirillova (обсуждение | вклад) (изменена лемма) |
||
Строка 2: | Строка 2: | ||
|statement= Пусть <tex>\mathrm{SAT} \in \mathrm{P}/poly </tex>. Тогда для любой формулы <tex>\phi</tex> с <tex>n</tex> переменными существует такая последовательность схем полиномиального размера <tex>C_n^1, \ldots, C_n^n</tex>, что <tex>C_n^i</tex> возвращает значение <tex>i</tex>-й переменной в наборе переменных, удовлетворяющих <tex>\phi</tex>, если <tex>\phi \in \mathrm{SAT}</tex>, или <tex>0</tex> если <tex>\phi \not \in \mathrm{SAT}</tex> | |statement= Пусть <tex>\mathrm{SAT} \in \mathrm{P}/poly </tex>. Тогда для любой формулы <tex>\phi</tex> с <tex>n</tex> переменными существует такая последовательность схем полиномиального размера <tex>C_n^1, \ldots, C_n^n</tex>, что <tex>C_n^i</tex> возвращает значение <tex>i</tex>-й переменной в наборе переменных, удовлетворяющих <tex>\phi</tex>, если <tex>\phi \in \mathrm{SAT}</tex>, или <tex>0</tex> если <tex>\phi \not \in \mathrm{SAT}</tex> | ||
|proof= | |proof= | ||
− | + | Определим схемы следующим образом: | |
+ | *<tex>C_n^1(\phi) = 1 \Leftrightarrow \exists x_2,\ldots, x_n: \phi(1,x_2, \ldots, x_n)=1</tex>; | ||
+ | *<tex> \ldots </tex> | ||
+ | *<tex>C_n^i(\phi, b_1, \ldots, b_{i-1}) = 1 \Leftrightarrow \exists x_{i+1},\ldots, x_n: \phi(b_1, \ldots, b_{i-1},1,x_{i+1}, \ldots, x_n)=1</tex>; | ||
+ | *<tex> \ldots </tex> | ||
+ | *<tex>C_n^n(\phi, b_1, \ldots, b_{n - 1}) = 1 \Leftrightarrow \phi(b_1, \ldots, b_{n-1}, 1)=1</tex>. | ||
+ | Задача определения возврщаемого значения таких схем {{---}} задача <tex>\mathrm{SAT}</tex>. По условию <tex>\mathrm{SAT} \in \mathrm{P}/poly </tex>, следовательно, такие схемы существуют и каждая из них будет полиномиального размера. Рассмотрим последовательность: <tex>b_1=C_n^1(\phi), b_2=C_n^2(\phi, b1), \ldots, b_n=C_n^n(\phi, b_1, \ldots, b_{n-1})</tex>. Очевидно, что это будет последовательностью бит, которая удовлетворяет <tex>\phi</tex>, или же последовательностью нулей, если <tex>\phi</tex> удовлетворить нельзя. | ||
}} | }} | ||
Версия 06:02, 6 июня 2012
Лемма: |
Пусть . Тогда для любой формулы с переменными существует такая последовательность схем полиномиального размера , что возвращает значение -й переменной в наборе переменных, удовлетворяющих , если , или если |
Доказательство: |
Определим схемы следующим образом:
|
Теорема (Карп, Липтон): |
Если , то . |
Доказательство: |
Рассмотрим язык |