Марковская цепь — различия между версиями
(→Поглощающая цепь) |
(→Эргодическая цепь) |
||
Строка 76: | Строка 76: | ||
|definition= | |definition= | ||
'''Эргодическая''' марковская цепь — марковская цепь, целиком состоящая из одного эргодического класса. | '''Эргодическая''' марковская цепь — марковская цепь, целиком состоящая из одного эргодического класса. | ||
+ | }} | ||
+ | |||
+ | Пусть <tex> N_{i, j} </tex> — множество таких <tex> n </tex>, что находясь в состоянии <tex> i </tex>, можно оказаться в состоянии <tex> j </tex> через <tex> n </tex> шагов. <tex> d_i </tex> — наибольший общий делитель чисел из множества <tex> N_{i, i} </tex>. | ||
+ | |||
+ | {{Лемма | ||
+ | |statement= | ||
+ | Для <tex> i </tex> и <tex> j </tex>, принадлежащих одному классу эквивалентности, <tex> d_i = d_j = d </tex> и числа из множества <tex> N_{i, j} </tex> сравнимы между собой по модулю <tex> d </tex>. | ||
+ | |proof= | ||
+ | Пусть <tex> a \in N_{i, j}, \ b \in N_{i, j}, \ c \in N_{j, i} </tex>. Из <tex> i </tex> можно попасть в <tex> j </tex> и обратно, значит, <tex> a + c \in N_{i, i} </tex>. Также после попадания в <tex> j </tex> можно сколько угодно раз перейти из него в самого себя, и только потом перейти в <tex> i </tex>, для этого понадобится <tex> a + k \cdot d_j + c </tex> шагов при любом достаточно большом <tex> k </tex>. Значит, <tex> d_j </tex> должно делиться на <tex> d_i </tex>. Но аналогично можно доказать, что <tex> d_i </tex> делится на <tex> d_j </tex>, поэтому <tex> d_i = d_j = d </tex>. Также можно перейти за <tex> b </tex> шагов в <tex> j </tex>, а потом попасть в <tex> i </tex>, поэтому <tex> b + c \in N_{i, i} </tex>. Значит, <tex> a + c </tex> и <tex> b + c </tex> оба делятся на <tex> d </tex>, то есть <tex> a </tex> и <tex> b </tex> сравнимы между собой по модулю <tex> d </tex>. | ||
+ | }} | ||
+ | |||
+ | Введём числа <tex> t_{i, j}, 0 \leqslant t_{i, j} < d </tex>, так, что любой элемент из <tex> N_{i, j} </tex> сравним с <tex> t_{i, j} </tex> по модулю <tex> d </tex>. | ||
+ | |||
+ | {{Определение | ||
+ | |definition= | ||
+ | '''Циклический класс''' — класс, для любых элементов <tex> i </tex> и <tex> j </tex> которого верно равенство <tex> t_{i, j} = 0 </tex>. | ||
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | + | Если цепь состоит целиком из одного циклического класса, её называют '''[[Регулярная марковская цепь|регулярной]]''', иначе — '''циклической'''. | |
}} | }} | ||
− | + | Если цепь циклическая, у неё есть некоторый период <tex> d > 1 </tex>, а её состояния подразделяются на <tex> d </tex> циклических классов. Цепь движется по циклическим классам в определённом порядке, возвращаясь в класс с начальным состоянием через <tex> d </tex> шагов. | |
=== Поглощающая цепь === | === Поглощающая цепь === |
Версия 20:09, 12 июня 2012
Определение: |
Цепь Маркова — последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем, что при фиксированном настоящем будущее независимо от прошлого.
Процесс в каждый момент времени находится в одном из состояний.При этом, если он находится в состоянии с номером Матрицу , то он перейдет в состояние с вероятностью . называют матрицей переходов. |
На матрицу переходов накладываются следующие условия:
Такая матрица называется стохастической.
Марковскую цепь можно представить в виде графа, в котором вершины — это состояния процесса, а ребра — переходы между состояниями, и на ребре из
в написана вероятность перехода из в , то есть .Содержание
Распределение вероятностей
Марковскую цепь в любой момент времени
можно охарактеризовать вектором-строкой — распределением вероятностей по состояниям цепи ( — вероятность цепи в момент времени быть в состоянии ).Если
— текущее распределение вероятностей, то можно узнать распределение на следующем шаге, умножив вектор на матрицу перехода:.
Из ассоциативности произведения матриц следует, что для того, чтобы узнать распределение вероятностей через
шагов, нужно умножить на матрицу перехода, возведённую в степень :.
Для марковской цепи иногда задают начальное распределение
, хотя во многих классах марковских цепей распределение по прошествии большого периода времени от него не зависит (такое распределение называют предельным).Достижимость и сообщаемость
Обозначим вероятность попасть из состояния
в состояние за переходов как .
Определение: |
Состояние | достижимо (accesible) из состояния , если существует такое , что . Достижимость из обозначается .
Определение: |
Состояния | и сообщаются (communicate), если они достижимы друг из друга. Сообщаемость и обозначается .
Классификация цепей и состояний
Неразложимая цепь
Определение: |
Неразложимый класс (communicating class) — класс эквивалентности множества состояний по отношению сообщаемости. Если представить марковскую цепь как граф, неразложимый класс будет аналогичен компоненте сильной связности. |
Определение: |
Неразложимая цепь (ireducible chain) — цепь Маркова, в которой все состояния образуют один неразложимый класс. |
Эргодическая цепь
Определение: |
Упорядочим (очевидно, упорядочение будет частичным) неразложимые классы отношением достижимости. Минимальные элементы в таком упорядочении называются эргодическими классами. Состояния в эргодических классах называются эргодическими (ergodic), возвратными, или существенными. Все остальные неразложимые классы называются невозвратными классами. Состояния, входящие в них, называются невозвратными или несущественными. |
Определение: |
Если эргодический класс состоит из одного состояния, такое состояние называется поглощающим (absorbing). |
Из свойств частичного упорядочения, в любой цепи Маркова найдется хотя бы один эргодический класс.
Определение: |
Эргодическая марковская цепь — марковская цепь, целиком состоящая из одного эргодического класса. |
Пусть — множество таких , что находясь в состоянии , можно оказаться в состоянии через шагов. — наибольший общий делитель чисел из множества .
Лемма: |
Для и , принадлежащих одному классу эквивалентности, и числа из множества сравнимы между собой по модулю . |
Доказательство: |
Пусть | . Из можно попасть в и обратно, значит, . Также после попадания в можно сколько угодно раз перейти из него в самого себя, и только потом перейти в , для этого понадобится шагов при любом достаточно большом . Значит, должно делиться на . Но аналогично можно доказать, что делится на , поэтому . Также можно перейти за шагов в , а потом попасть в , поэтому . Значит, и оба делятся на , то есть и сравнимы между собой по модулю .
Введём числа
, так, что любой элемент из сравним с по модулю .
Определение: |
Циклический класс — класс, для любых элементов | и которого верно равенство .
Определение: |
Если цепь состоит целиком из одного циклического класса, её называют регулярной, иначе — циклической. |
Если цепь циклическая, у неё есть некоторый период , а её состояния подразделяются на циклических классов. Цепь движется по циклическим классам в определённом порядке, возвращаясь в класс с начальным состоянием через шагов.
Поглощающая цепь
Определение: |
Поглощающее состояние — состояние, из которого нельзя попасть ни в какое другое, то есть | — поглощающее состояние, если .
Определение: |
Поглощающей (absorbing chain) называется марковская цепь, в которой есть хотя бы одно поглощающее состояние и из любого состояния достижимо хотя бы одно поглощающее. |
В примере на рисунке поглощающими являются состояния 3 и 4, а непоглощающими — 1 и 2.
Пример
На рисунке:
- достижимыми состояниями являются: из (непосредственно), из (непосредственно), из (к примеру, через цепочку состояний ) и т.д.
- сообщаются состояния и (непосредственно), и (непосредственно), и (достижимы друг из друга) и т. д.
- неразложимыми классами являются множества вершин , , , ;
- эргодическими классами являются множества вершин , ;
- поглощающим состоянием является состояние .
- если расматривать отдельно, можно выделить два циклических класса и (на каждом шаге цепь переходит из одного состояния в другое, а через шага возвращается в одно и то же состояние.
Литература
- И.В. Романовский «Дискретный анализ». 3-е изд., 2003. стр. 270—279
- Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"
- Википедия — Цепь Маркова