R2Cmax — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «<div style="background-color: #ABCDEF; font-size: 16px; font-weight: bold; color: #000000; text-align: center; padding: 4px; border-style: solid; border-width: 1p...»)
 
(Эффективное решение)
Строка 15: Строка 15:
  
 
==Эффективное решение==
 
==Эффективное решение==
Используем для решения данной задачи динамическое программирование.
+
Применим для решения данной задачи динамическое программирование.
 +
 
 +
Будем  считать <tex>dp[i][j]</tex>, в котором будем хранить минимально время выполнения работ на втором станке, где <tex>i</tex> означает, что мы рассмотрели <tex>i</tex> работ, а <tex>j</tex> с каким временем выполнения работ на первом станке.
 +
 
 +
Изначальное значение <tex>dp[0][0] = 0</tex>.

Версия 01:33, 17 июня 2012

Эта статья находится в разработке!


Постановка задачи

Дано два разных неоднородных станка, которые работают параллельно. Есть [math]n[/math] работ, время выполнения которых на первом и втором станке различное. Нужно минимизировать время завершения всех работ.

Сложность задачи

Задача [math]R2 \mid \mid C_{max}[/math] является [math]\mathrm{NP}[/math]-полной задачей.

Неэффективное решение

Переберём все битовые последовательности из [math]n[/math] элементов. Для каждой перестановки вычислим завершение последней работы. Работы будем выполнять следующим образом, если на [math]i[/math] -й позиции стоит 0, то [math]i[/math] -ая работа будет выполняться на первом станке, иначе на втором. Среди всех перестановок выберем ту перестановку, у которой [math]C_{max}[/math] минимальный.

Время работы алгоритма [math]O(n \cdot 2^n)[/math]

Эффективное решение

Применим для решения данной задачи динамическое программирование.

Будем считать [math]dp[i][j][/math], в котором будем хранить минимально время выполнения работ на втором станке, где [math]i[/math] означает, что мы рассмотрели [math]i[/math] работ, а [math]j[/math] с каким временем выполнения работ на первом станке.

Изначальное значение [math]dp[0][0] = 0[/math].