Периодичность цепных дробей — различия между версиями
Строка 3: | Строка 3: | ||
Пусть <tex>\alpha</tex> приведённая квадратичная иррациональность, тогда её цепная дробь периодична. | Пусть <tex>\alpha</tex> приведённая квадратичная иррациональность, тогда её цепная дробь периодична. | ||
|proof= | |proof= | ||
− | Число <tex>\alpha</tex> представимо в виде <tex>\frac{a+\sqrt{D}}{c}, a,c,D \in \mathbb{Z}</tex>. Назовём это видом Х. | + | Число <tex>\alpha</tex> представимо в виде <tex>\frac{a+\sqrt{D}}{c}, a,c,D \in \mathbb{Z}</tex> и <tex>a^2-D\vdots c</tex>. Назовём это видом Х. |
Рассмотрим <tex>\alpha_1=\frac{1}{\alpha-q}, q=[\alpha]</tex>. Заметим, что <tex>\alpha_1>1</tex>. Преобразуем: <tex>\alpha_1=\frac{c}{a+\sqrt{D}-qc}=\frac{c(a-qc-\sqrt{D})}{(a-qc)^2-D}</tex>. Заметим, что <tex>(a-qc)^2-D\vdots c</tex>, значит <tex>\alpha_1</tex> представима в виде Х. Докажем, что <tex>\alpha_1</tex> приведённая. <tex>\overline{\alpha_1}=\frac{1}{\overline{\alpha}-[\alpha]}</tex>. Но <tex>\overline{\alpha}\in (-1;0), [\alpha]>1</tex>, значит <tex>\overline{\alpha_1}\in(-1;0)</tex>. | Рассмотрим <tex>\alpha_1=\frac{1}{\alpha-q}, q=[\alpha]</tex>. Заметим, что <tex>\alpha_1>1</tex>. Преобразуем: <tex>\alpha_1=\frac{c}{a+\sqrt{D}-qc}=\frac{c(a-qc-\sqrt{D})}{(a-qc)^2-D}</tex>. Заметим, что <tex>(a-qc)^2-D\vdots c</tex>, значит <tex>\alpha_1</tex> представима в виде Х. Докажем, что <tex>\alpha_1</tex> приведённая. <tex>\overline{\alpha_1}=\frac{1}{\overline{\alpha}-[\alpha]}</tex>. Но <tex>\overline{\alpha}\in (-1;0), [\alpha]>1</tex>, значит <tex>\overline{\alpha_1}\in(-1;0)</tex>. |
Версия 20:24, 2 июля 2010
Теорема: |
Пусть приведённая квадратичная иррациональность, тогда её цепная дробь периодична. |
Доказательство: |
Число представимо в виде и . Назовём это видом Х.Рассмотрим . Заметим, что . Преобразуем: . Заметим, что , значит представима в виде Х. Докажем, что приведённая. . Но , значит .Посмотрим теперь на возможные значения Количество и . , откуда из возможных значения , следует . Теперь ограничим a. , отсюда . . конечно, а количество неограниченно. Значит в какой-то момент у нас зациклятся и цепная дробь станет периодичной. |
Теорема: |
Пусть приведённая квадратичная иррациональность, тогда её цепная дробь чисто периодична. |
Доказательство: |
Докажем аналогичное утверждение .Введём .Осталось только записать переходы отсюда . Получаем, что |