Интеграл Фейера — различия между версиями
Sementry (обсуждение | вклад) (добавил доказательство теоремы, исправил недочеты) |
Sementry (обсуждение | вклад) м |
||
Строка 40: | Строка 40: | ||
Оценка сверху: <tex> \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {|\sin (2n+ 1)t|}{t} dt \le \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {1}{t} dt = \ln t \bigg|_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \sim \ln n </tex>. | Оценка сверху: <tex> \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {|\sin (2n+ 1)t|}{t} dt \le \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {1}{t} dt = \ln t \bigg|_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \sim \ln n </tex>. | ||
− | Оценка снизу: <tex> \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {|\sin (2n+ 1)t|}{t} dt \ge \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {\sin^2 (2n+ 1)t}{t} dt = \frac12 \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac{dt}{t} - \frac12 _{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {\cos (4n+ 2)t}{t} dt \sim ln n </tex>. | + | Оценка снизу: <tex> \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {|\sin (2n+ 1)t|}{t} dt \ge \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {\sin^2 (2n+ 1)t}{t} dt = \frac12 \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac{dt}{t} - \frac12 _{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {\cos (4n+ 2)t}{t} dt \sim \ln n </tex>. |
Отсюда получаем требуемое. | Отсюда получаем требуемое. |
Версия 16:10, 9 июня 2012
Определение: |
Определим так называемые суммы Фейера, как среднее арифметическое сумм Фурье: | .
Подставим в эту формулу интеграл Дирихле:
Определение: |
Ядро Фейера - | .
Пользуясь определением, запишем . Так как ядро Дирихле четное, то по формуле, ядро Фейера тоже четное. Заинтегрируем по ядро Фейера: , то есть ядро Фейера нормированно . Поступая аналогично ядру Дирихле, можно придти к выводу — основная формула для исследования сумм Фейера в индивидуальной точке. Найдем замкнутое выражение для ядра Фейера.
Утверждение: |
|
Из этой формулы видно, что ядро Фейера всегда неотрицательно, в отличии от ядра Дирихле.
Определение: |
называется константой Лебега. |
Утверждение: |
при больших . |
Так как на выполняется двойное неравенство , то можно рассматривать .Разобьем интеграл на две части, :. Оценка сверху: .Оценка снизу: Отсюда получаем требуемое. . |
Именно с этим фактом связана трудность исследования рядов Фурье в индивидуальной точке, в отличии от сумм Фейера, где ядро положительно и условия сходимости выписываются проще.
Поясним смысл сумм Фейера: в свое время, рассматривая числовые ряды, мы говорили, что
, где . Для расходящихся рядов, можно применять обобщенные методы суммирования, главное, чтобы выполнялись свойства перманентности и эффективности. К примеру, если , то по методу средних арифметических. В точно таком же смысле, если взять ряд Фурье: (с.а.). В этом и состоит смысл введения сумм Фейера.