Факторгруппа — различия между версиями
(→Факторгруппа) |
|||
Строка 4: | Строка 4: | ||
<tex>a_1\cdot b_1=a\cdot h_a\cdot b\cdot h_b=a\cdot b\cdot (b^{-1}\cdot h_a\cdot b)\cdot h_b=a\cdot b\cdot h\cdot h_b\in abH</tex> | <tex>a_1\cdot b_1=a\cdot h_a\cdot b\cdot h_b=a\cdot b\cdot (b^{-1}\cdot h_a\cdot b)\cdot h_b=a\cdot b\cdot h\cdot h_b\in abH</tex> | ||
− | + | {{Определение | |
+ | |definition= | ||
Таким образом, фактормножество <tex>G/H</tex> образует подгруппу, которая называется '''факторгруппой''' <tex>G</tex> по <tex>H</tex> . Нейтральным элементом является <tex>H</tex>, обратным к <tex>aH</tex> - <tex>a^{-1}H</tex>. | Таким образом, фактормножество <tex>G/H</tex> образует подгруппу, которая называется '''факторгруппой''' <tex>G</tex> по <tex>H</tex> . Нейтральным элементом является <tex>H</tex>, обратным к <tex>aH</tex> - <tex>a^{-1}H</tex>. | ||
− | + | }} | |
'''примером факторгруппы''' является группа класса вычетов по модулю <tex>n</tex>. | '''примером факторгруппы''' является группа класса вычетов по модулю <tex>n</tex>. |
Версия 20:45, 2 июля 2010
Факторгруппа
Рассмотрим группу и ее нормальную подгруппу . Пусть - множество смежных классов по . Определим в групповую операцию по следующему правилу: произведением двух классов является класс, в который входит произведение представителей этих классов. Проверим корректность этого определения. Пусть . Докажем, что . Достаточно показать, что .
Определение: |
Таким образом, фактормножество | образует подгруппу, которая называется факторгруппой по . Нейтральным элементом является , обратным к - .
примером факторгруппы является группа класса вычетов по модулю .