Факторгруппа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Факторгруппа)
Строка 4: Строка 4:
 
<tex>a_1\cdot b_1=a\cdot h_a\cdot b\cdot h_b=a\cdot b\cdot (b^{-1}\cdot h_a\cdot b)\cdot h_b=a\cdot b\cdot h\cdot h_b\in abH</tex>
 
<tex>a_1\cdot b_1=a\cdot h_a\cdot b\cdot h_b=a\cdot b\cdot (b^{-1}\cdot h_a\cdot b)\cdot h_b=a\cdot b\cdot h\cdot h_b\in abH</tex>
  
 
+
{{Определение
 +
|definition=
 
Таким образом, фактормножество <tex>G/H</tex> образует подгруппу, которая называется '''факторгруппой''' <tex>G</tex> по <tex>H</tex> . Нейтральным элементом является <tex>H</tex>, обратным к <tex>aH</tex> - <tex>a^{-1}H</tex>.
 
Таким образом, фактормножество <tex>G/H</tex> образует подгруппу, которая называется '''факторгруппой''' <tex>G</tex> по <tex>H</tex> . Нейтральным элементом является <tex>H</tex>, обратным к <tex>aH</tex> - <tex>a^{-1}H</tex>.
 
+
}}
  
 
'''примером факторгруппы''' является группа класса вычетов по модулю <tex>n</tex>.  
 
'''примером факторгруппы''' является группа класса вычетов по модулю <tex>n</tex>.  

Версия 20:45, 2 июля 2010

Факторгруппа

Рассмотрим группу [math]G[/math] и ее нормальную подгруппу [math]H[/math]. Пусть [math]G/H[/math] - множество смежных классов [math]G[/math] по [math]H[/math]. Определим в [math]G/H[/math] групповую операцию по следующему правилу: произведением двух классов является класс, в который входит произведение представителей этих классов. Проверим корректность этого определения. Пусть [math]aH,bH\in G/H,\,a_1=a\cdot h_a\in aH,\,b_1=b\cdot h_b\in bH[/math]. Докажем, что [math]abH=a_1 b_1 H[/math]. Достаточно показать, что [math]a_1\cdot b_1 \in abH[/math].

[math]a_1\cdot b_1=a\cdot h_a\cdot b\cdot h_b=a\cdot b\cdot (b^{-1}\cdot h_a\cdot b)\cdot h_b=a\cdot b\cdot h\cdot h_b\in abH[/math]


Определение:
Таким образом, фактормножество [math]G/H[/math] образует подгруппу, которая называется факторгруппой [math]G[/math] по [math]H[/math] . Нейтральным элементом является [math]H[/math], обратным к [math]aH[/math] - [math]a^{-1}H[/math].


примером факторгруппы является группа класса вычетов по модулю [math]n[/math].