Сортировка подсчётом — различия между версиями
Nechaev (обсуждение | вклад) м (→Источники) |
Murtaught (обсуждение | вклад) (Творческое переосмысление) |
||
Строка 1: | Строка 1: | ||
'''Сортировка подсчётом''' {{---}} алгоритм сортировки целых чисел в диапазоне от <tex>0</tex> до некоторой константы <tex>k</tex> или сложных объектов, работающий за линейное время. | '''Сортировка подсчётом''' {{---}} алгоритм сортировки целых чисел в диапазоне от <tex>0</tex> до некоторой константы <tex>k</tex> или сложных объектов, работающий за линейное время. | ||
− | == Сортировка | + | == Сортировка целых чисел == |
− | + | <!-- Сделать нормальное описание --> | |
Это простейший вариант алгоритма. Создать вспомогательный массив <tex>C[0..k - 1]</tex>, состоящий из нулей, затем последовательно прочитать элементы входного массива <tex>A</tex> и для каждого <tex>A[i]</tex> увеличить <tex>C[A[i]]</tex> на единицу. Теперь достаточно пройти по массиву <tex>C</tex> и для каждого <tex>number \in \{0, ..., k - 1\}</tex> в массив <tex>A</tex> последовательно записать число <tex>number\</tex> <tex> C[number]</tex> раз. | Это простейший вариант алгоритма. Создать вспомогательный массив <tex>C[0..k - 1]</tex>, состоящий из нулей, затем последовательно прочитать элементы входного массива <tex>A</tex> и для каждого <tex>A[i]</tex> увеличить <tex>C[A[i]]</tex> на единицу. Теперь достаточно пройти по массиву <tex>C</tex> и для каждого <tex>number \in \{0, ..., k - 1\}</tex> в массив <tex>A</tex> последовательно записать число <tex>number\</tex> <tex> C[number]</tex> раз. | ||
− | + | ||
SimpleCountingSort | SimpleCountingSort | ||
for number = 0 to k - 1 | for number = 0 to k - 1 | ||
C[number] = 0; | C[number] = 0; | ||
+ | |||
for i = 0 to length[A] - 1 | for i = 0 to length[A] - 1 | ||
C[A[i]] = C[A[i]] + 1; | C[A[i]] = C[A[i]] + 1; | ||
+ | |||
pos = 0; | pos = 0; | ||
for number = 0 to k - 1 | for number = 0 to k - 1 | ||
Строка 14: | Строка 16: | ||
A[pos] = number; | A[pos] = number; | ||
pos = pos + 1; | pos = pos + 1; | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Сортировка сложных объектов == | == Сортировка сложных объектов == | ||
− | + | Сортировка целых чисел за линейное время это хорошо, но недостаточно. Иногда бывает очень желательно применить быстрый алгоритм [[#Сортировка целых чисел|сортировки подсчетом]] для упорядочивания набора каких-либо "сложных" данных. Под "сложными объектами" здесь подразумеваются структуры, содержащие в себе несколько полей. Одно из них мы выделим и назовем ключом, сортировка будет идти именно по нему (предполагается, что значения, принимаемые ключом {{---}} целые числа в диапазоне от <tex>0</tex> до <tex>k-1</tex>). | |
− | Иногда бывает очень желательно применить быстрый алгоритм [[Сортировка | ||
Мы не сможем использовать здесь в точности тот же алгоритм, что и для сортировки подсчетом обычных целых чисел, потому что в наборе могут быть различные структуры, имеющие одинаковые ключи. Существует два способа справиться с этой проблемой {{---}} использовать списки для хранения структур в отсортированном массиве или заранее посчитать количество структур с одинаковыми ключами для каждого значения ключа. | Мы не сможем использовать здесь в точности тот же алгоритм, что и для сортировки подсчетом обычных целых чисел, потому что в наборе могут быть различные структуры, имеющие одинаковые ключи. Существует два способа справиться с этой проблемой {{---}} использовать списки для хранения структур в отсортированном массиве или заранее посчитать количество структур с одинаковыми ключами для каждого значения ключа. | ||
− | + | === Описание === | |
− | |||
Исходная последовательность из <tex>n</tex> структур хранится в массиве <tex>A</tex>, а отсортированная {{---}} в массиве <tex>B</tex> того же размера. Кроме того, используется вспомогательный массив <tex>P</tex> с индексами от <tex>0</tex> до <tex>k-1</tex>. | Исходная последовательность из <tex>n</tex> структур хранится в массиве <tex>A</tex>, а отсортированная {{---}} в массиве <tex>B</tex> того же размера. Кроме того, используется вспомогательный массив <tex>P</tex> с индексами от <tex>0</tex> до <tex>k-1</tex>. | ||
Строка 75: | Строка 44: | ||
Таким образом после завершения алгоритма в <tex>B</tex> будет содержаться исходная последовательность в отсортированном виде (так как блоки расположены по возрастанию соответствующих ключей). | Таким образом после завершения алгоритма в <tex>B</tex> будет содержаться исходная последовательность в отсортированном виде (так как блоки расположены по возрастанию соответствующих ключей). | ||
− | Стоит также отметить, что эта сортировка является устойчивой, так как два элемента с одинаковыми ключами будут добавлены в том же порядке, в каком просматривались в исходном массиве <tex>A</tex>. | + | Стоит также отметить, что эта сортировка является устойчивой, так как два элемента с одинаковыми ключами будут добавлены в том же порядке, в каком просматривались в исходном массиве <tex>A</tex>. Благодаря этому свойству существует [[цифровая сортировка]]. |
− | |||
− | |||
+ | === Псевдокод === | ||
Здесь <tex>A</tex> и <tex>B</tex> {{---}} массивы структур размера <tex>n</tex>, с индексами от <tex>0</tex> до <tex>n-1</tex>. | Здесь <tex>A</tex> и <tex>B</tex> {{---}} массивы структур размера <tex>n</tex>, с индексами от <tex>0</tex> до <tex>n-1</tex>. | ||
<tex>P</tex> {{---}} целочисленный массив размера <tex>k</tex>, с индексами от <tex>0</tex> до <tex>k-1</tex>, где <tex>k</tex> {{---}} количество различных ключей. | <tex>P</tex> {{---}} целочисленный массив размера <tex>k</tex>, с индексами от <tex>0</tex> до <tex>k-1</tex>, где <tex>k</tex> {{---}} количество различных ключей. | ||
Строка 103: | Строка 71: | ||
копируется структура <tex>A[i]</tex> целиком, а не только её ключ. | копируется структура <tex>A[i]</tex> целиком, а не только её ключ. | ||
− | + | == Анализ == | |
− | + | <!-- Переписать первый абзац --> | |
− | Его трудоемкость, таким образом, равна <tex> | + | В первом алгоритме первые два цикла работают за <tex>\Theta(k)</tex> и <tex>\Theta(n)</tex>, соответственно; двойной цикл за <tex>\Theta(n + k)</tex>. Алгоритм имеет линейную временную трудоёмкость <tex>\Theta(n + k)</tex>. Используемая дополнительная память равна <tex>\Theta(k)</tex>. |
− | Как и в обычной сортировке подсчетом, требуется <tex> | + | |
+ | Второй алгоритм состоит из двух проходов по массиву <tex>A</tex> размера <tex>n</tex> и одного прохода по массиву <tex>P</tex> размера <tex>k</tex>. | ||
+ | Его трудоемкость, таким образом, равна <tex>\Theta(n + k)</tex>. На практике сортировку подсчетом имеет смысл применять, если <tex>k = O(n)</tex>, поэтому можно считать время работы алгоритма равным <tex>\Theta(n)</tex>. <br> | ||
+ | Как и в обычной сортировке подсчетом, требуется <tex>\Theta(n + k)</tex> дополнительной памяти {{---}} на хранение массива <tex>B</tex> размера <tex>n</tex> и массива <tex>P</tex> размера <tex>k</tex>. | ||
+ | |||
+ | == Поиск диапазона ключей == | ||
+ | Если диапазон значений не известен заранее, то его можно найти с помощью линейного поиска минимума и максимума в исходном массиве, что не повлияет на асимптотику алгоритма. <br> | ||
+ | Нужно учитывать, что минимум может быть отрицательным, в то время как в массиве <tex>P</tex> индексы от <tex>0</tex> до <tex>k-1</tex>. Поэтому при работе с массивом <tex>P</tex> из исходного <tex>A[i]</tex> необходимо вычитать минимум, а при обратной записи в <tex>B[i]</tex> прибавлять его. | ||
== Источники == | == Источники == | ||
− | + | * [http://ru.wikipedia.org/wiki/Сортировка_подсчётом Википедия {{---}} Сортировка подсчетом] | |
− | * [http://ru.wikipedia.org/wiki/Сортировка_подсчётом | + | * [http://en.wikipedia.org/wiki/Counting_sort Wikipedia {{---}} Counting sort] |
− | * [http://en.wikipedia.org/wiki/Counting_sort Counting sort {{---}} | + | * Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 224{{---}}226. |
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Сортировки]] | [[Категория: Сортировки]] |
Версия 14:18, 12 июня 2012
Сортировка подсчётом — алгоритм сортировки целых чисел в диапазоне от
до некоторой константы или сложных объектов, работающий за линейное время.Содержание
Сортировка целых чисел
Это простейший вариант алгоритма. Создать вспомогательный массив
, состоящий из нулей, затем последовательно прочитать элементы входного массива и для каждого увеличить на единицу. Теперь достаточно пройти по массиву и для каждого в массив последовательно записать число раз.SimpleCountingSort for number = 0 to k - 1 C[number] = 0; for i = 0 to length[A] - 1 C[A[i]] = C[A[i]] + 1; pos = 0; for number = 0 to k - 1 for i = 0 to C[j] - 1 A[pos] = number; pos = pos + 1;
Сортировка сложных объектов
Сортировка целых чисел за линейное время это хорошо, но недостаточно. Иногда бывает очень желательно применить быстрый алгоритм сортировки подсчетом для упорядочивания набора каких-либо "сложных" данных. Под "сложными объектами" здесь подразумеваются структуры, содержащие в себе несколько полей. Одно из них мы выделим и назовем ключом, сортировка будет идти именно по нему (предполагается, что значения, принимаемые ключом — целые числа в диапазоне от до ).
Мы не сможем использовать здесь в точности тот же алгоритм, что и для сортировки подсчетом обычных целых чисел, потому что в наборе могут быть различные структуры, имеющие одинаковые ключи. Существует два способа справиться с этой проблемой — использовать списки для хранения структур в отсортированном массиве или заранее посчитать количество структур с одинаковыми ключами для каждого значения ключа.
Описание
Исходная последовательность из
структур хранится в массиве , а отсортированная — в массиве того же размера. Кроме того, используется вспомогательный массив с индексами от до .Идея алгоритма состоит в предварительном подсчете количества элементов с различными ключами в исходном массиве и разделении результирующего массива на части соответствующей длины (будем называть их блоками). Затем при повторном проходе исходного массива каждый его элемент копируется в специально отведенный его ключу блок, в первую свободную ячейку. Это осуществляется с помощью массива индексов
, в котором хранятся индексы начала блоков для различных ключей. — индекс в результирующем массиве, соответствующий первому элементу блока для ключа .- Пройдем по исходному массиву и запишем в количество структур, ключ которых равен .
- Мысленно разобьем массив на блоков, длина каждого из которых равна соответственно , , ..., .
- Теперь массив нам больше не нужен. Превратим его в массив, хранящий в сумму элементов от до старого массива .
- Теперь "сдвинем" массив
Это можно сделать за один проход по массиву , причем одновременно с предыдущим шагом.
После этого действия в массиве будут хранится индексы массива . указывает на начало блока в , соответствующего ключу . на элемент вперед: в новом массиве , а для , где — старый массив .
- Произведем саму сортировку. Еще раз пройдем по исходному массиву и для всех будем помещать структуру в массив на место , а затем увеличивать на . Здесь — это ключ структуры, находящейся в массиве на -том месте.
Таким образом после завершения алгоритма в
будет содержаться исходная последовательность в отсортированном виде (так как блоки расположены по возрастанию соответствующих ключей).Стоит также отметить, что эта сортировка является устойчивой, так как два элемента с одинаковыми ключами будут добавлены в том же порядке, в каком просматривались в исходном массиве цифровая сортировка.
. Благодаря этому свойству существуетПсевдокод
Здесь
и — массивы структур размера , с индексами от до . — целочисленный массив размера , с индексами от до , где — количество различных ключей.ComplexCountingSort for i = 0 to k - 1 P[i] = 0; for i = 0 to length[A] - 1 P[A[i].key] = P[A[i].key] + 1; carry = 0; for i = 0 to k - 1 temporary = P[i]; P[i] = carry; carry = carry + temporary; for i = 0 to length[A] - 1 B[P[A[i].key]] = A[i]; P[A[i].key] = P[A[i].key] + 1;
Здесь шаги 3 и 4 из описания объединены в один цикл. Обратите внимание, что в последнем цикле инструкцией
B[P[A[i].key]] = A[i];
копируется структура
целиком, а не только её ключ.Анализ
В первом алгоритме первые два цикла работают за
и , соответственно; двойной цикл за . Алгоритм имеет линейную временную трудоёмкость . Используемая дополнительная память равна .Второй алгоритм состоит из двух проходов по массиву
Как и в обычной сортировке подсчетом, требуется дополнительной памяти — на хранение массива размера и массива размера .
Поиск диапазона ключей
Если диапазон значений не известен заранее, то его можно найти с помощью линейного поиска минимума и максимума в исходном массиве, что не повлияет на асимптотику алгоритма.
Нужно учитывать, что минимум может быть отрицательным, в то время как в массиве индексы от до . Поэтому при работе с массивом из исходного необходимо вычитать минимум, а при обратной записи в прибавлять его.
Источники
- Википедия — Сортировка подсчетом
- Wikipedia — Counting sort
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 224—226.