Префикс-функция — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Оптимизация)
(Время работы)
Строка 55: Строка 55:
  
 
===Время работы===
 
===Время работы===
Время работы алгоритма составит <tex>O(n)</tex>. Для доказательства этого нужно заметить, что итоговое количество итераций цикла <tex>while</tex> составит время работы алгоритма. Теперь стоит отметить, что <tex>k</tex> увеличивается на каждом шаге не более чем на единицу, значит максимально возможное значение <tex>k = n - 1</tex>. Внутри цикла <tex>while</tex> значение <tex>k</tex> лишь уменьшается, а из предыдущего утверждения получается, что оно не может суммарно уменьшиться больше, чем <tex>n-1</tex> раз, значит цикл <tex>while</tex> в итоге выполнится не более <tex>n</tex> раз, что дает итоговую оценку времени алгоритма <tex>O(n)</tex>.
+
Время работы алгоритма составит <tex>O(n)</tex>. Для доказательства этого нужно заметить, что итоговое количество итераций цикла <tex>while</tex> составит время работы алгоритма. Теперь стоит отметить, что <tex>k</tex> увеличивается на каждом шаге не более чем на единицу, значит максимально возможное значение <tex>k = n - 1</tex>. Внутри цикла <tex>while</tex> значение <tex>k</tex> лишь уменьшается, а из предыдущего утверждения получается, что оно не может суммарно уменьшиться больше, чем <tex>n-1</tex> раз. Значит цикл <tex>while</tex> в итоге выполнится не более <tex>n</tex> раз, что дает итоговую оценку времени алгоритма <tex>O(n)</tex>.
  
 
== Литература ==
 
== Литература ==
 
Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. {{---}} 2-е изд. {{---}} М.: Издательский дом «Вильямс», 2007. {{---}} С. 1296.
 
Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. {{---}} 2-е изд. {{---}} М.: Издательский дом «Вильямс», 2007. {{---}} С. 1296.

Версия 17:44, 12 июня 2012

Префикс-функция строки [math]s[/math] — функция [math]\pi(i) = max \{ k | k \lt i,[/math] [math]s[1..k] = s[i - k + 1..i] \}[/math], где [math]k[/math] принадлежит расширенному множеству натуральных чисел.

Алгоритм

Наивный алгоритм вычисляет префикс функцию непосредственно по определению, сравнивая префиксы и суффиксы строк.

Псевдокод

Prefix_function ([math]s[/math])
     [math]\pi[/math] = [0,..0]
     for i = 1 to n
         for k = 1 to i - 1
             if s[1..k] == s[i - k + 1..i]
                 [math]\pi[/math][i] = k
     return [math]\pi[/math]

Пример

Рассмотрим строку abcabcd, для которой значение префикс-функции равно [math][0,0,0,1,2,3,0][/math].

Шаг Строка Значение функции
[math]1[/math] a 0
[math]2[/math] ab 0
[math]3[/math] abc 0
[math]4[/math] abca 1
[math]5[/math] abcab 2
[math]6[/math] abcabc 3
[math]7[/math] abcabcd 0

Время работы

Всего [math]O(n^2)[/math] итераций цикла, на каждой из который происходит сравнение строк за [math]O(n)[/math], что дает в итоге [math]O(n^3)[/math].

Оптимизация

Вносятся несколько важных замечаний:

  • Следует заметить, что [math]\pi(i) \le \pi(i-1) + 1[/math]. По определению префикс функции верно, что [math]s[1..\pi(i)] = s[i - \pi(i)..i][/math]. Отсюда получается, что [math]s[1..\pi(i - 1)] = s[i - \pi(i)..i - 1][/math]. Поскольку [math]\pi[/math] это наибольший префикс равный суффиксу, то [math]\pi(i - 1) \gt = \pi(i) - 1[/math].
  • Избавимся от явных сравнений строк. Для этого подберем такое [math]k[/math], что [math]k = \pi(i) - 1[/math]. Делать это нужно следующим образом. За исходное [math]k[/math] нужно взять [math]\pi(i - 1)[/math], что следует из первого пункта. В случае, когда символы [math]s[k+1][/math] и [math]s[i][/math] не совпадают, [math]\pi(k)[/math] — следующая длина потенциального наибольшего общего префикса, что видно из рисунка. Последнее утверждение верно, пока [math]k\gt 0[/math], что позволит всегда найти его следующее значение. Если [math]k=0[/math], то [math]\pi(i)=1[/math] при [math]s[i] = s[1][/math] , иначе [math]\pi(i)=0[/math].

Prefix2.jpg

Псевдокод

Prefix_function ([math]s[/math])
     [math]\pi[/math][1] = 0
     k = 0
     for i = 2 to n
         while k > 0 && s[i] != s[k + 1]
             k = [math]\pi[/math][k]
         if s[i] == s[k + 1]
             k++
         [math]\pi[/math][i] = k
     return [math]\pi[/math]

Время работы

Время работы алгоритма составит [math]O(n)[/math]. Для доказательства этого нужно заметить, что итоговое количество итераций цикла [math]while[/math] составит время работы алгоритма. Теперь стоит отметить, что [math]k[/math] увеличивается на каждом шаге не более чем на единицу, значит максимально возможное значение [math]k = n - 1[/math]. Внутри цикла [math]while[/math] значение [math]k[/math] лишь уменьшается, а из предыдущего утверждения получается, что оно не может суммарно уменьшиться больше, чем [math]n-1[/math] раз. Значит цикл [math]while[/math] в итоге выполнится не более [math]n[/math] раз, что дает итоговую оценку времени алгоритма [math]O(n)[/math].

Литература

Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.