Действие группы на множестве — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 48: Строка 48:
  
  
'''Пример:''' Пусть <tex>G</tex> - группа с операцией <tex>'*'</tex> и множество <tex>X = G</tex>. Зададим отображение <tex>F: G\times X\to X</tex>, такое что <tex>f(g,x) = g*x</tex>. Тогда все свойства из определения выполнятся вследствие соответствующих свойств группы. Таким образом группа <tex>G</tex> действует на <tex>X</tex>.
+
'''Пример 1:''' Пусть <tex>G</tex> - группа с операцией <tex>'*'</tex> и множество <tex>X = G</tex>. Зададим отображение <tex>F: G\times X\to X</tex>, такое что <tex>f(g,x) = g*x</tex>. Тогда все свойства из определения выполнятся вследствие соответствующих свойств группы. Таким образом группа <tex>G</tex> действует на <tex>X</tex>.
 +
 
 +
'''Пример 2:''' Пусть <tex>G</tex> - группа с операцией <tex>'*'</tex> и множество <tex>X = G</tex>. Зададим отображение <tex>F: G\times X\to X</tex>, такое что <tex>f(g,x) = g*x*g^{-1}</tex>. Все свойства из определения выполнены, следовательно группа <tex>G</tex> действует на <tex>X</tex>.
  
 
[[Категория: Теория групп]]
 
[[Категория: Теория групп]]

Версия 18:49, 4 июля 2010

Эта статья требует доработки!
  1. Необходимо добавить примеры.

Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).

Пусть имеется множество [math]X[/math].

Определение:
[math]G[/math] действует на [math]X[/math], если
  1. [math] \forall g \in G , x \in X \quad gx \in X [/math]
  2. [math] \forall g_1, g_2 \in G , x \in X \quad (g_1 g_2)x = g_1(g_2 x) [/math]
  3. [math] \forall x \in X \quad ex = x [/math]


Определение:
Орбита [math]Orb(x)=\{gx \mid g \in G\}[/math]


Определение:
Стабилизатор [math]St(x)=\{g \in G \mid gx = x\}[/math]


Определение:
Фиксатор [math]Fix(g)=\{x \in X \mid gx = x\}[/math]


Утверждение:
Стабилизатор замкнут относительно операции в группе (умножения)
[math]\triangleright[/math]
[math] \forall g_1, g_2 \in G g_1, g_2 \in St(x) \Rightarrow g_1 x = x \And g_2 x = x \Rightarrow (g_1 g_2) x = g_1 (g_2 x) = g_1 x=x [/math]
[math]\triangleleft[/math]
Утверждение:
[math] Orb(x) \cap Orb(y) \neq \varnothing \Rightarrow Orb(x) = Orb(y) [/math]
[math]\triangleright[/math]

[math]Orb(x) \cap Orb(y) \neq \varnothing \Rightarrow[/math] [math]\exist[/math] [math] g_1, g_2 \in G : g_1 x = g_2 y \Rightarrow x = g_1 ^ {-1} g_2 y \Rightarrow x \in Orb(y) \Rightarrow Orb(x) \subseteq Orb(y) [/math].

Аналогично доказываем, что [math]Orb(y) \subseteq Orb(x)[/math], откуда следует, что [math]Orb(x) = Orb(y)[/math]
[math]\triangleleft[/math]

Видно, что бинарное отношение [math]x \mathcal R y \Leftrightarrow Orb(x) = Orb(y)[/math] является отношением эквивалентности на [math]X[/math] и разбивает его на независимые классы эквивалентности − орбиты. Можно поставить задачу о нахождении количества орбит, которая решается с помощью леммы Бернсайда.


Пример 1: Пусть [math]G[/math] - группа с операцией [math]'*'[/math] и множество [math]X = G[/math]. Зададим отображение [math]F: G\times X\to X[/math], такое что [math]f(g,x) = g*x[/math]. Тогда все свойства из определения выполнятся вследствие соответствующих свойств группы. Таким образом группа [math]G[/math] действует на [math]X[/math].

Пример 2: Пусть [math]G[/math] - группа с операцией [math]'*'[/math] и множество [math]X = G[/math]. Зададим отображение [math]F: G\times X\to X[/math], такое что [math]f(g,x) = g*x*g^{-1}[/math]. Все свойства из определения выполнены, следовательно группа [math]G[/math] действует на [math]X[/math].