Интеграл Дирихле — различия между версиями
| Строка 12: | Строка 12: | ||
По свойствам интеграла, меняя местами значки интеграла и конечного суммирования, получим  | По свойствам интеграла, меняя местами значки интеграла и конечного суммирования, получим  | ||
<tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}(\cos{kt}\cos{kx}+\sin{kt}\sin{kx})dt)=</tex>  | <tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}(\cos{kt}\cos{kx}+\sin{kt}\sin{kx})dt)=</tex>  | ||
| − | <tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}cos{k(x-t)})dt</tex>.  | + | <tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}\cos{k(x-t)})dt</tex>.  | 
{{Определение  | {{Определение  | ||
|definition=  | |definition=  | ||
| Строка 40: | Строка 40: | ||
Домножим это выражение на <tex>\sin{\frac{t}{2}}</tex>:  | Домножим это выражение на <tex>\sin{\frac{t}{2}}</tex>:  | ||
| − | <tex>\sin{\frac{t}{2}}D_n(t) = \frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\sum\limits_{k=1}^{n}  | + | <tex>\sin{\frac{t}{2}}D_n(t) = \frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\sum\limits_{k=1}^{n} \cos{kt} \sin{\frac{t}{2}})=</tex>    | 
| − | cos{kt} \sin{\frac{t}{2}})=</tex>    | ||
<tex>\frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\frac{1}{2}\sum\limits_{k=1}^{n}(\sin{(k+\frac{1}{2})t}-\sin{(k-\frac{1}{2})t}))=</tex>  | <tex>\frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\frac{1}{2}\sum\limits_{k=1}^{n}(\sin{(k+\frac{1}{2})t}-\sin{(k-\frac{1}{2})t}))=</tex>  | ||
| − | <tex>\frac{1}{\pi}(\frac{1}{2}sin{\frac{t}{2}}+\frac{1}{2}(\sin{(n+\frac{1}{2})t}-\sin{\frac{t}{2}}))=</tex> <tex>\frac{1}{2\pi}\sin{(n+\frac{1}{2})t}</tex>  | + | <tex>\frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\frac{1}{2}(\sin{(n+\frac{1}{2})t}-\sin{\frac{t}{2}}))=</tex> <tex>\frac{1}{2\pi}\sin{(n+\frac{1}{2})t}</tex>  | 
Разделив обе части на <tex>\sin{\frac{t}{2}}</tex>, получим требуемую формулу.  | Разделив обе части на <tex>\sin{\frac{t}{2}}</tex>, получим требуемую формулу.  | ||
}}  | }}  | ||
| − | Используя эту формулу, можно записать: <tex dpi="140">S_n(f,x)=\int\limits_{-\pi}^{\pi}f(x+t)\frac{1}{2\pi}\frac{\sin{(  | + | Используя эту формулу, можно записать: <tex dpi="140">S_n(f,x)=\int\limits_{-\pi}^{\pi}f(x+t)\frac{1}{2\pi}\frac{\sin{(n+\frac{1}{2})t}}{\sin{\frac{t}{2}}}dt=</tex> (пользуясь четностью ядра и линейностью интеграла)  | 
<tex>=\int\limits_{-\pi}^{0}+\int\limits_{0}^{\pi}=\int\limits_{0}^{\pi}(f(x+t)+f(x-t))D_n(t)dt</tex>  | <tex>=\int\limits_{-\pi}^{0}+\int\limits_{0}^{\pi}=\int\limits_{0}^{\pi}(f(x+t)+f(x-t))D_n(t)dt</tex>  | ||
Версия 00:26, 23 июня 2012
Для удобства вводим обозначения: ,где , — коэффициенты Фурье, — частичные суммы ряда Фурье, — ряд Фурье.
Следуя Дирихле, запишем частичную сумму ряда Фурье посредством интеграла:
По свойствам интеграла, меняя местами значки интеграла и конечного суммирования, получим .
| Определение: | 
| Тригонометрический полином вида называется ядром Дирихле. | 
Подставляя эту функцию в только что полученную формулу, приходим к следующему выражению:
| Определение: | 
| — интеграл Дирихле. | 
Из формулы для ядра видно, что ядро — четная функция, более того, если ядро заинтегрировать по всему участку , то такой интеграл равен .
Воспользуемся свойством, что если  — -периодична, то . Проделав замену переменных  в интеграле Дирихле, приходим к формуле:
| Определение: | 
| . В такой форме записи частичная сумма называется интегралом свертки c ядром . | 
Чтобы применять этот интеграл, найдем замкнутое выражение для ядра.
| Утверждение: | 
|  
 По определению ядра: . Домножим это выражение на : 
 
 Разделив обе части на , получим требуемую формулу.  | 
Используя эту формулу, можно записать: (пользуясь четностью ядра и линейностью интеграла)
(это проверяется непосредственно). Пусть , тогда .
Приходим к формуле: — основная формула для изучения сходимости ряда Фурье в индивидуальной точке .