1outtreesumwc — различия между версиями
Rybak (обсуждение | вклад) (Обозначения и Литература) |
Rybak (обсуждение | вклад) м |
||
Строка 1: | Строка 1: | ||
− | + | {{В разработке}} | |
<tex dpi = "200" >1 \mid outtree \mid \sum w_i C_i</tex> | <tex dpi = "200" >1 \mid outtree \mid \sum w_i C_i</tex> |
Версия 16:24, 21 июня 2012
Эта статья находится в разработке!
Содержание
Постановка задачи
Мы должны составить расписание с произвольными временами обработки на одном станке. Минимизировать нужно взвешенную сумму времен завершения работ. Зависимости между работами заданы исходящим деревом — работа, которая соответствует корню, доступна в начале, все другие работы зависят от одной работы — отца в дереве. Тривиальным примером подобной задачи является демонтаж сложного механизма.
Алгоритм
Решение данной задачи было предложено Адольфсоном и Ху[1] в 1973 году.
Докажем некоторые свойства оптимального расписания, которые мы будем использовать в доказательстве корректности алгоритма.
Введем некоторые обозначения для удобства. Обозначим за
поддерево работы в дереве зависимостей. Для всех работ обозначим . Для множества работ :
Литература
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 73 - 78
Примечания
- ↑ D. Adolphson and T.C. Hu. Optimal linear ordering. SIAM Journal of Applied Mathematics, 25:403–423, 1973.