Функции ограниченной вариации — различия между версиями
(o_O) |
|||
Строка 1: | Строка 1: | ||
− | < | + | Рассмотрим <tex>f : [a, b] \to \mathbb{R}</tex> и ее разбиение <tex>\tau: a = x_0 < x_1 \dots < x_n = b</tex> |
− | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Вариацией''' функции | + | '''Вариацией''' функции <tex>f</tex> по разбиению <tex>\tau</tex> называется <tex>\bigvee\limits_a^b (f, \tau) = \sum\limits_{k = 0}^{n - 1} | f(x_{k + 1}) - f(x_k)|</tex>.<br> |
− | '''Полной вариацией''' называется | + | '''Полной вариацией''' называется <tex>\bigvee\limits_a^b(f) = \sup\limits_{\tau} \bigvee\limits_a^b (f, \tau)</tex>.<br> |
− | + | <tex>f</tex> называется функцией '''ограниченной вариации''', если <tex>\bigvee\limits_a^b(f) < + \infty</tex>.<br> | |
− | Класс функций ограниченной вариации обозначается как | + | Класс функций ограниченной вариации обозначается как <tex>\bigvee(a, b)</tex>. |
}} | }} | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть | + | Пусть <tex>f</tex> монотонно не убывает, тогда она ограниченной вариации. |
|proof= | |proof= | ||
− | По определению неубывания, | + | По определению неубывания, <tex>|f(x_{k+1}) - f(x_k)| = f(x_{k+1}) - f(x_k)</tex>, тогда вариация равна <tex>f(b) - f(a)</tex>, то есть конечна. Аналогично с не возрастающей функцией. |
}} | }} | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть | + | Пусть <tex>f'</tex> опредлена на <tex>(a, b)</tex> и ограничена, тогда <tex>f</tex> — функция ограниченной вариации. |
|proof= | |proof= | ||
− | + | <tex>f' < M \Rightarrow \bigvee_a^b (f) \le M(b - a) \le + \infty</tex> | |
{{TODO|t=НЕ ОЧЕНЬ ПОНИМАЮ, ЗАЧЕМ ВООБЩЕ ЭТО УТСВЕРЖДЕНИЕ ТУТ}} | {{TODO|t=НЕ ОЧЕНЬ ПОНИМАЮ, ЗАЧЕМ ВООБЩЕ ЭТО УТСВЕРЖДЕНИЕ ТУТ}} | ||
}} | }} | ||
Строка 28: | Строка 27: | ||
Не все непрерывные функции имеют ограниченную вариацию. | Не все непрерывные функции имеют ограниченную вариацию. | ||
|proof= | |proof= | ||
− | Возьмем | + | Возьмем <tex>f(x) = x \sin(\frac 1x), x \int [0; 1], f(0) = 0</tex> |
{{TODO|t=ЭМ, ТУТ КАКОЙ-ТО ТРЕШ}} | {{TODO|t=ЭМ, ТУТ КАКОЙ-ТО ТРЕШ}} | ||
}} | }} | ||
Строка 36: | Строка 35: | ||
аддитивность вариации | аддитивность вариации | ||
|statement= | |statement= | ||
− | Пусть | + | Пусть <tex>f(x) \in \bigvee(a, c)</tex> и <tex>b \in [a, c]</tex>, тогда <tex>\bigvee\limits_a^c (f) = \bigvee\limits_a^b (f) = \bigvee\limits_b^c (f)</tex>. |
|proof= | |proof= | ||
− | 1) Рассмотрим разбиения | + | 1) Рассмотрим разбиения <tex>\tau_1: a = x_0 < \dots < x_p = b, \tau_2: b = x_p < \dots < x_{p + m} = c</tex>. |
− | + | <tex> \tau_1 \cup \tau_2 = a = x_0 < \dots < x_{p+m} = c </tex>. | |
− | По определению полной вариации, | + | По определению полной вариации, <tex>\forall \varepsilon > 0 \exists \tau_1, \tau_2: \bigvee\limits_a^b (f) - \varepsilon < \bigvee\limits_a^b (f, \tau_1), \bigvee\limits_b^c (f) - \varepsilon < \bigvee\limits_b^c (f, \tau_2)</tex> |
− | + | <tex> \bigvee\limits_a^b (f) + \bigvee\limits_b^c(f) - 2 \varepsilon < \bigvee\limits_a^b (f, \tau_1) + \bigvee\limits_b^c (f, \tau_2) = \bigvee\limits_a^c (f, \tau_1 \cup \tau_2) \le \bigvee\limits_a^c(f) </tex> | |
− | Устремляя | + | Устремляя <tex>\varepsilon</tex> к 0, получаем <tex> \bigvee\limits_a^b (f) + \bigvee\limits_b^c(f) \le \bigvee\limits_a^c (f)</tex>. |
− | 2) Для любого | + | 2) Для любого <tex>\varepsilon > 0 \exists \tau \bigvee\limits_a^c (f) - \varepsilon < \bigvee\limits_a^c (f, \tau)</tex>. Однако в это разбиение может не войти точка <tex>b</tex> в это разбиение, поэтому получим из него разбиение <tex>\tau' : a=x_0 < \dots < x_p = b < x_{p+1} < \dots < x_{p+m} = c</tex>. Пусть <tex>\tau_1</tex> — разбиение <tex>a=x_0 < \dots x_p=b</tex>, а <tex>\tau_2</tex> — разбиение <tex>x_p = b \dots x_{p+m} = c</tex>. Тогда: |
− | + | <tex>\bigvee\limits_a^c (f) - \varepsilon < \bigvee\limits_a^c (f, \tau) \le \bigvee\limits_a^c (f, \tau') \le \bigvee\limits_a^b (f, \tau_1) + \bigvee\limits_b^c (f, \tau_2) \le \bigvee\limits_a^b (f) + \bigvee\limits_b^c (f) </tex>. | |
− | Устремляя | + | Устремляя <tex>\varepsilon</tex> к 0, получим <tex> \bigvee\limits_a^c (f) \le \bigvee\limits_a^b (f) + \bigvee\limits_b^c (f) </tex>. Объединяя этот результат с результатом 1 пункта, приходим к требуемому равенству. |
}} | }} | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Если | + | Если <tex>f</tex> — функция ограниченной вариации (<tex>f \in \bigvee(a, b)</tex>), то ее можно представить в виде разности монотонно неубывающих функций (<tex>f = f_1 - f_2</tex>). |
|proof= | |proof= | ||
− | Возьмем в качестве | + | Возьмем в качестве <tex>f_1</tex> функцию <tex>f_1(x) = \bigvee\limits_a^x (f)</tex>, тогда по аддитивности она будет не убывать. |
− | Определим как | + | Определим как <tex>f_2</tex> функцию <tex>f_2(x) = f_1(x) - f(x)</tex>. Докажем, что она монотонно не убывает. |
− | + | <tex>a < x_1 < x_2 < b</tex>. Надо доказать, что <tex>f_1(x_1) - f(x_1) \le f_1(x_2) - f(x_2)</tex>, или что <tex>f(x_2) - f(x_1) \le f_1(x_2) - f_1(x_1) = \bigvee\limits_{x_1}^{x_2} (f)</tex> (используем утверждение 1). | |
− | Но действительно | + | Но действительно <tex>abacaba f(x_2) - f(x_1) \le | f(x_2) - f(x_1) | \le \bigvee\limits_{x_1}^{x_2} (f)</tex>, ч. т. д. |
}} | }} | ||
− |
Версия 16:57, 22 июня 2012
Рассмотрим
и ее разбиение
Определение: |
Вариацией функции Полной вариацией называется | по разбиению называется .
Утверждение: |
Пусть монотонно не убывает, тогда она ограниченной вариации. |
По определению неубывания, | , тогда вариация равна , то есть конечна. Аналогично с не возрастающей функцией.
Утверждение: |
Пусть опредлена на и ограничена, тогда — функция ограниченной вариации. |
TODO: НЕ ОЧЕНЬ ПОНИМАЮ, ЗАЧЕМ ВООБЩЕ ЭТО УТСВЕРЖДЕНИЕ ТУТ |
Утверждение: |
Не все непрерывные функции имеют ограниченную вариацию. |
Возьмем TODO: ЭМ, ТУТ КАКОЙ-ТО ТРЕШ |
Теорема (аддитивность вариации): |
Пусть и , тогда . |
Доказательство: |
1) Рассмотрим разбиения . .По определению полной вариации,
Устремляя к 0, получаем . 2) Для любого . Однако в это разбиение может не войти точка в это разбиение, поэтому получим из него разбиение . Пусть — разбиение , а — разбиение . Тогда:Устремляя . к 0, получим . Объединяя этот результат с результатом 1 пункта, приходим к требуемому равенству. |
Теорема: |
Если — функция ограниченной вариации ( ), то ее можно представить в виде разности монотонно неубывающих функций ( ). |
Доказательство: |
Возьмем в качестве Но действительно функцию , тогда по аддитивности она будет не убывать. Определим как функцию . Докажем, что она монотонно не убывает. . Надо доказать, что , или что (используем утверждение 1). , ч. т. д. |