Функции ограниченной вариации — различия между версиями
Строка 46: | Строка 46: | ||
Устремляя <tex>\varepsilon</tex> к 0, получаем <tex> \bigvee\limits_a^b (f) + \bigvee\limits_b^c(f) \le \bigvee\limits_a^c (f)</tex>. | Устремляя <tex>\varepsilon</tex> к 0, получаем <tex> \bigvee\limits_a^b (f) + \bigvee\limits_b^c(f) \le \bigvee\limits_a^c (f)</tex>. | ||
− | 2) Для любого <tex>\varepsilon > 0 \exists \tau \bigvee\limits_a^c (f) - \varepsilon < \bigvee\limits_a^c (f, \tau)</tex>. Однако в это разбиение может не войти точка <tex>b</tex> | + | |
+ | 2) Для любого <tex>\varepsilon > 0 \exists \tau \bigvee\limits_a^c (f) - \varepsilon < \bigvee\limits_a^c (f, \tau)</tex>. Однако в это разбиение может не войти точка <tex>b</tex>, поэтому получим из него разбиение <tex>\tau' : a=x_0 < \dots < x_p = b < x_{p+1} < \dots < x_{p+m} = c</tex>. Пусть <tex>\tau_1</tex> — разбиение <tex>a=x_0 < \dots x_p=b</tex>, а <tex>\tau_2</tex> — разбиение <tex>x_p = b \dots x_{p+m} = c</tex>. Тогда: | ||
<tex>\bigvee\limits_a^c (f) - \varepsilon < \bigvee\limits_a^c (f, \tau) \le \bigvee\limits_a^c (f, \tau') \le \bigvee\limits_a^b (f, \tau_1) + \bigvee\limits_b^c (f, \tau_2) \le \bigvee\limits_a^b (f) + \bigvee\limits_b^c (f) </tex>. | <tex>\bigvee\limits_a^c (f) - \varepsilon < \bigvee\limits_a^c (f, \tau) \le \bigvee\limits_a^c (f, \tau') \le \bigvee\limits_a^b (f, \tau_1) + \bigvee\limits_b^c (f, \tau_2) \le \bigvee\limits_a^b (f) + \bigvee\limits_b^c (f) </tex>. | ||
Строка 60: | Строка 61: | ||
Определим как <tex>f_2</tex> функцию <tex>f_2(x) = f_1(x) - f(x)</tex>. Докажем, что она монотонно не убывает. | Определим как <tex>f_2</tex> функцию <tex>f_2(x) = f_1(x) - f(x)</tex>. Докажем, что она монотонно не убывает. | ||
<tex>a < x_1 < x_2 < b</tex>. Надо доказать, что <tex>f_1(x_1) - f(x_1) \le f_1(x_2) - f(x_2)</tex>, или что <tex>f(x_2) - f(x_1) \le f_1(x_2) - f_1(x_1) = \bigvee\limits_{x_1}^{x_2} (f)</tex> (используем утверждение 1). | <tex>a < x_1 < x_2 < b</tex>. Надо доказать, что <tex>f_1(x_1) - f(x_1) \le f_1(x_2) - f(x_2)</tex>, или что <tex>f(x_2) - f(x_1) \le f_1(x_2) - f_1(x_1) = \bigvee\limits_{x_1}^{x_2} (f)</tex> (используем утверждение 1). | ||
− | Но действительно f(x_2) - f(x_1) \le | + | Но действительно <tex> f(x_2) - f(x_1) \le |(f(x_2) - f(x_1))| \le \bigvee\limits_{x_1}^{x_2} (f)</tex>, ч. т. д. |
В обратную сторону следствие верно, так как монотонные функции — ограниченные вариацией, и их разность, тоже ограниченая вариацией. | В обратную сторону следствие верно, так как монотонные функции — ограниченные вариацией, и их разность, тоже ограниченая вариацией. |
Версия 19:55, 23 июня 2012
Рассмотрим
и ее разбиение
Определение: |
Вариацией функции Полной вариацией называется | по разбиению называется .
Утверждение: |
Пусть монотонно не убывает, тогда она ограниченной вариации. |
По определению неубывания, | , тогда вариация равна , то есть конечна. Аналогично с не возрастающей функцией.
Утверждение: |
Пусть опредлена на и ограничена, тогда — функция ограниченной вариации. |
TODO: НЕ ОЧЕНЬ ПОНИМАЮ, ЗАЧЕМ ВООБЩЕ ЭТО УТСВЕРЖДЕНИЕ ТУТ |
Утверждение: |
Не все непрерывные функции имеют ограниченную вариацию. |
Возьмем . Возьмем систему точек . . . Видно, что это образует расходящийся гармонический ряд, сумма которого имеет порядок . |
Теорема (аддитивность вариации): |
Пусть и , тогда . |
Доказательство: |
1) Рассмотрим разбиения . .По определению полной вариации,
Устремляя к 0, получаем .2) Для любого . Однако в это разбиение может не войти точка , поэтому получим из него разбиение . Пусть — разбиение , а — разбиение . Тогда:Устремляя . к 0, получим . Объединяя этот результат с результатом 1 пункта, приходим к требуемому равенству. |
Теорема: |
— функция ограниченной вариации ( ) тогда и только тогда, когда ее можно представить в виде разности монотонно неубывающих функций ( ). |
Доказательство: |
Возьмем в качестве В обратную сторону следствие верно, так как монотонные функции — ограниченные вариацией, и их разность, тоже ограниченая вариацией. функцию , тогда по аддитивности она будет не убывать. Определим как функцию . Докажем, что она монотонно не убывает. . Надо доказать, что , или что (используем утверждение 1). Но действительно , ч. т. д. |