Алгоритм Шибера-Вишкина — различия между версиями
Строка 5: | Строка 5: | ||
Основная идея алгоритма следующая. | Основная идея алгоритма следующая. | ||
− | # Если бы дерево, в котором нужно искать <tex>LCA</tex> было бы | + | # Если бы дерево, в котором нужно искать <tex>LCA</tex> было бы простым путем, можно было бы найти <tex>LCA(u, v)</tex> просто взяв ту вершину, которая находится в дереве ближе к корню. |
# Если дерево {{---}} полное двоичное дерево высоты <tex>h</tex>, то можно сопоставить каждой вершине битовый вектор длиной <tex>h</tex> (целое число от <tex>0</tex> до <tex>2^h-1</tex>) и с помощью битовых операций над этими векторами найти <tex>LCA(u, v)</tex> | # Если дерево {{---}} полное двоичное дерево высоты <tex>h</tex>, то можно сопоставить каждой вершине битовый вектор длиной <tex>h</tex> (целое число от <tex>0</tex> до <tex>2^h-1</tex>) и с помощью битовых операций над этими векторами найти <tex>LCA(u, v)</tex> | ||
− | Тогда, представив данное дерево как полное двоичное дерево, в некоторых вершинах которого находится | + | Тогда, представив данное дерево как полное двоичное дерево, в некоторых вершинах которого находится простой путь, можно научиться искать <tex>LCA(v, u)</tex> в нем за <tex>O(1)</tex>. |
==Подготовка== | ==Подготовка== | ||
Строка 53: | Строка 53: | ||
'''Второй случай''' <tex>\operatorname{inlabel} v = \operatorname{order} u</tex>, <tex>u \in S(v), u \ne v</tex>. Так как в поддереве <tex>v</tex> представлены все <tex>\operatorname{order}</tex>-ы из отрезка <tex>[\operatorname{order} v; \operatorname{order} v + \operatorname{size} v - 1]</tex>, то рассмотрим того непосредственного потомка <tex>w</tex> вершины <tex>v</tex>, что <tex>u \in S(w)</tex>. Тогда, так как степень двойки у <tex>u</tex> максимальна, по утверждению в начале доказательства, других вершин с такой же степенью двойки нет, то <tex>\operatorname{inlabel} w = \operatorname{inlabel} v = \operatorname{order} u</tex>. Так как отрезки, соответствующие поддеревьям сыновей, не пересекаются, не найдется другого <tex>w'</tex> {{---}} потомок <tex>v</tex>, что в поддереве <tex>w'</tex> есть вершина с такой же степенью двойки. Значит, все вершины <tex>v'</tex>, у которых <tex>\operatorname{inlabel} v' = \operatorname{inlabel} v</tex> находятся в поддереве <tex>w</tex>. | '''Второй случай''' <tex>\operatorname{inlabel} v = \operatorname{order} u</tex>, <tex>u \in S(v), u \ne v</tex>. Так как в поддереве <tex>v</tex> представлены все <tex>\operatorname{order}</tex>-ы из отрезка <tex>[\operatorname{order} v; \operatorname{order} v + \operatorname{size} v - 1]</tex>, то рассмотрим того непосредственного потомка <tex>w</tex> вершины <tex>v</tex>, что <tex>u \in S(w)</tex>. Тогда, так как степень двойки у <tex>u</tex> максимальна, по утверждению в начале доказательства, других вершин с такой же степенью двойки нет, то <tex>\operatorname{inlabel} w = \operatorname{inlabel} v = \operatorname{order} u</tex>. Так как отрезки, соответствующие поддеревьям сыновей, не пересекаются, не найдется другого <tex>w'</tex> {{---}} потомок <tex>v</tex>, что в поддереве <tex>w'</tex> есть вершина с такой же степенью двойки. Значит, все вершины <tex>v'</tex>, у которых <tex>\operatorname{inlabel} v' = \operatorname{inlabel} v</tex> находятся в поддереве <tex>w</tex>. | ||
− | Получили, что прообраз <tex>\operatorname{inlabel} v</tex> в вершине <tex>v</tex> или обрывается, или продолжается вниз ровно в одного потомка. Значит, прообраз <tex>\operatorname{inlabel} v</tex> {{---}} | + | Получили, что прообраз <tex>\operatorname{inlabel} v</tex> в вершине <tex>v</tex> или обрывается, или продолжается вниз ровно в одного потомка. Значит, прообраз <tex>\operatorname{inlabel} v</tex> {{---}} простой путь из какой-то вершины вниз в <tex>T</tex>, что и требовалось доказать. |
}} | }} | ||
Строка 84: | Строка 84: | ||
Посчитаем для каждого <tex>\operatorname{inlabel} v</tex> множество всех его потомков в <tex>B</tex> по основным ребрам. Заметим, что для хранения одного потомка достаточно хранить только его высоту в дереве. Чтобы восстановить его значение, нужно просто подняться на <tex>\Delta h</tex> вверх от вершины <tex>v</tex>. Поэтому, все это множество можно уместить в целое число: <tex>i</tex>-й бит будет единицей, если есть потомок на высоте <tex>i</tex>. Назовем это число, отвечающее множеству предков, <tex>\operatorname{ascendant} v</tex>. | Посчитаем для каждого <tex>\operatorname{inlabel} v</tex> множество всех его потомков в <tex>B</tex> по основным ребрам. Заметим, что для хранения одного потомка достаточно хранить только его высоту в дереве. Чтобы восстановить его значение, нужно просто подняться на <tex>\Delta h</tex> вверх от вершины <tex>v</tex>. Поэтому, все это множество можно уместить в целое число: <tex>i</tex>-й бит будет единицей, если есть потомок на высоте <tex>i</tex>. Назовем это число, отвечающее множеству предков, <tex>\operatorname{ascendant} v</tex>. | ||
− | В дальнейшем <tex>\operatorname{ascendant} v </tex> поможет в поиске <tex>LCA(\operatorname{inlabel} v, \operatorname{inlabel} u)</tex>. Также, нам понадобится еще следующая информация. <tex>\operatorname{head} v</tex> {{---}} самая не глубокая вершина <tex>u</tex> такая, что <tex>\operatorname{inlabel} v = \operatorname{inlabel} u</tex>. | + | В дальнейшем <tex>\operatorname{ascendant} v </tex> поможет в поиске <tex>LCA(\operatorname{inlabel} v, \operatorname{inlabel} u)</tex>. Также, нам понадобится еще следующая информация. <tex>\operatorname{head} v</tex> {{---}} самая не глубокая вершина <tex>u</tex> такая, что <tex>\operatorname{inlabel} v = \operatorname{inlabel} u</tex>. <tex>\operatorname{level} v</tex> {{---}} глубина вершины <tex>v</tex> в <tex>T</tex>. |
==Обработка запроса== | ==Обработка запроса== | ||
Пусть <tex>x</tex>, <tex>y</tex> {{---}} вершины в исходном дереве <tex>LCA</tex> которых необходимо найти. Если <tex>\operatorname{inlabel} x = \operatorname{inlabel} y</tex>, то они принадлежат одному простому пути, а следовательно ответом на запрос является <tex>x</tex>, если <tex>\operatorname{level} x \le \operatorname{level} y</tex>, и <tex>y</tex>, в противном случае. Теперь рассмотрим случай, когда <tex>\operatorname{inlabel} x \ne \operatorname{inlabel} y</tex>, то есть <tex>x</tex> и <tex>y</tex> принадлежат разным простым путям. Найдем <tex>b = LCA(\operatorname{inlabel} x, \operatorname{inlabel} y)</tex>. | Пусть <tex>x</tex>, <tex>y</tex> {{---}} вершины в исходном дереве <tex>LCA</tex> которых необходимо найти. Если <tex>\operatorname{inlabel} x = \operatorname{inlabel} y</tex>, то они принадлежат одному простому пути, а следовательно ответом на запрос является <tex>x</tex>, если <tex>\operatorname{level} x \le \operatorname{level} y</tex>, и <tex>y</tex>, в противном случае. Теперь рассмотрим случай, когда <tex>\operatorname{inlabel} x \ne \operatorname{inlabel} y</tex>, то есть <tex>x</tex> и <tex>y</tex> принадлежат разным простым путям. Найдем <tex>b = LCA(\operatorname{inlabel} x, \operatorname{inlabel} y)</tex>. | ||
+ | |||
+ | Сначала найдем <tex>LCA(\operatorname{inlabel} x, \operatorname{inlabel} y)</tex> по каркасным ребрам. Для этого вомпользуемся посчитанными значениями <tex>\operatorname{ascendant} v</tex>. | ||
{{Утверждение | {{Утверждение | ||
− | |statement= <tex>LCA(\operatorname{inlabel} x, \operatorname{inlabel} y | + | |statement=Следующие вычисления позволяют найти <tex>LCA(\operatorname{inlabel} x, \operatorname{inlabel} y)</tex>: |
− | + | ||
+ | #<tex>i \leftarrow \lfloor\log_2 (\operatorname{inlabel} x \oplus \operatorname{inlabel} y)\rfloor</tex> | ||
+ | #<tex>path \leftarrow 2^i \frac{(\operatorname{ascendant} x) \wedge (\operatorname{ascendant} y)}{2^i}</tex> | ||
+ | #<tex>LCA(\operatorname{inlabel} x, \operatorname{inlabel} y) \leftarrow \frac12(path \oplus (path - 1)) + 1</tex> | ||
+ | |proof=<tex>x</tex> и <tex>y</tex> {{---}} вершины в <tex>B</tex>. Биты в их записи задают задают их местоположение в дереве. | ||
+ | Ноль {{---}} спуститься влево, единица {{---}} спуститься вправо или остаться здесь. Значит, наиболее значимый бит побитового исключающего или их номеров даст глубину, на которой пути до этих вершин начинают расходиться. Это и хранится в <tex>i</tex>. | ||
+ | |||
+ | Значит, мы нашли <tex>LCA</tex> по каркасным ребрам. Однако, могло случиться так, что <tex>LCA</tex> по основным ребрам, поиском которого мы занимаемся, находится выше (он не может находиться ниже или в стороне, так как все основные ребра направлены вниз). | ||
+ | |||
+ | Взяв побитовое и <tex>\operatorname{ascendant} x</tex> и <tex>\operatorname{ascendant} y</tex>, в старших единичных битах мы получим путь от корня по основным ребрам до этих вершин. При этом, про те биты, которые отвечают за уровни ниже <tex>LCA</tex>, ничего не известно. Поэтому, нужно их обнулить. Умножение и деление на <tex>2^i</tex> обнулят ненужные биты. После этого, для нахождения <tex>LCA</tex> по основным ребрам, нужно найти в <tex>path</tex> наименее значимый единичный бит. Формула <tex>\frac12(x \oplus (x - 1)) + 1</tex> имеено это и делает. | ||
}} | }} | ||
Строка 115: | Строка 126: | ||
===Запрос=== | ===Запрос=== | ||
Здесь нужно сделать <tex>O(1)</tex> действий для ответа на запрос. | Здесь нужно сделать <tex>O(1)</tex> действий для ответа на запрос. | ||
+ | |||
+ | ==Ссылки== | ||
+ | [http://ia600208.us.archive.org/12/items/onfindinglowe00schi/onfindinglowe00schi.pdf Оригинальная статья] |
Версия 21:22, 23 июня 2012
Алгоритм Шибера-Вишкина применяется для нахождения наименьшего общего предка двух вершин в дереве. Он использует
времени на подготовку и затем отвечает на каждый запрос за .Содержание
Идея алгоритма
Основная идея алгоритма следующая.
- Если бы дерево, в котором нужно искать было бы простым путем, можно было бы найти просто взяв ту вершину, которая находится в дереве ближе к корню.
- Если дерево — полное двоичное дерево высоты , то можно сопоставить каждой вершине битовый вектор длиной (целое число от до ) и с помощью битовых операций над этими векторами найти
Тогда, представив данное дерево как полное двоичное дерево, в некоторых вершинах которого находится простой путь, можно научиться искать
в нем за .Подготовка
Определение: |
| — входное дерево с вершинами. Для него нужно отвечать на запросы .
Перенумеруем вершины в порядке префиксного обхода дерева: сначала обрабатывается текущая вершина, затем — поддеревья.
Пусть — такой порядок обхода.
Обозначим за
количество вершин в поддереве вершины .Утверждение: |
Пусть . Тогда
|
По определению , вершин из поддерева образуют отрезок натуральных чисел длиной . Так как этот отрезок начинается с , то лежит в отрезке . |
Покроем дерево путями. А именно, сопоставим каждой вершине
число такое, что прообраз каждого в связен и является простым путем от какой-то вершины вниз до листа.Утверждение: |
В качестве можно выбрать , кратное максимальной степени двойки, где . |
Пусть , — максимально. Пусть есть вершина такая, что . Так как в отрезке, соответствующем вершине есть два числа, кратных , то там есть и число, кратное . Но тогда выбран неверно. Значит, в поддереве есть только одна такая вершина , что .Рассмотрим два случая. Первый случай Других таких вершин , что дает такую же степень двойки, нет. Значит, во всех поддеревьях значения отличаются от .Второй случай Получили, что прообраз , . Так как в поддереве представлены все -ы из отрезка , то рассмотрим того непосредственного потомка вершины , что . Тогда, так как степень двойки у максимальна, по утверждению в начале доказательства, других вершин с такой же степенью двойки нет, то . Так как отрезки, соответствующие поддеревьям сыновей, не пересекаются, не найдется другого — потомок , что в поддереве есть вершина с такой же степенью двойки. Значит, все вершины , у которых находятся в поддереве . в вершине или обрывается, или продолжается вниз ровно в одного потомка. Значит, прообраз — простой путь из какой-то вершины вниз в , что и требовалось доказать. |
Утверждение: |
, где |
Посмотрим на . Посмотрим на позицию самго значимого единичного бита в .Так как в там еще , а в — уже единица, то в отрезке есть число, кратное .Докажем, что нет чисел, кратных . Пусть такое число нашлось. Тогда -й бит менялся хотя бы два раза, а значит, менялся -й бит. А значит, самый значащий отличающийся бит в и в больше, чем -й.Заметим, что функция просто выделяет номер самого значашего единичного бита.Функция Чтобы получить из отрезка число, кратное обнуляет все биты младше -го. , будучи уверенными, что оно там есть, достаточно обнулить битов в правой границе отрезка. |
Каждое значение
соответствует вершине в полном двоичном дереве высоты . В дереве на одном наборе вершин будет построено два набора ребер: каркасные и основные. Для каждой вершины с уровня, кроме последнего, будут каркасные ребра и . Таким образом, вершины в будут занумерованы в инфиксном порядке обхода по каркасным ребрам: обход левого поддерева, нумерация вершины, обход правого поддерева. В будет основное ребро между вершинами и , если в есть ребро . Корень имеет номер . Будем говорить, что вершина лежит в поддереве вершины ( ), если от есть путь до по каркасным ребрам.Утверждение: |
Если в есть ребро , то в :
Другими словами, все основные ребра направлены вниз. |
Посчитаем для каждого
множество всех его потомков в по основным ребрам. Заметим, что для хранения одного потомка достаточно хранить только его высоту в дереве. Чтобы восстановить его значение, нужно просто подняться на вверх от вершины . Поэтому, все это множество можно уместить в целое число: -й бит будет единицей, если есть потомок на высоте . Назовем это число, отвечающее множеству предков, .В дальнейшем
поможет в поиске . Также, нам понадобится еще следующая информация. — самая не глубокая вершина такая, что . — глубина вершины в .Обработка запроса
Пусть
, — вершины в исходном дереве которых необходимо найти. Если , то они принадлежат одному простому пути, а следовательно ответом на запрос является , если , и , в противном случае. Теперь рассмотрим случай, когда , то есть и принадлежат разным простым путям. Найдем .Сначала найдем
по каркасным ребрам. Для этого вомпользуемся посчитанными значениями .Утверждение: |
Следующие вычисления позволяют найти :
|
и — вершины в . Биты в их записи задают задают их местоположение в дереве. Ноль — спуститься влево, единица — спуститься вправо или остаться здесь. Значит, наиболее значимый бит побитового исключающего или их номеров даст глубину, на которой пути до этих вершин начинают расходиться. Это и хранится в . Значит, мы нашли Взяв побитовое и по каркасным ребрам. Однако, могло случиться так, что по основным ребрам, поиском которого мы занимаемся, находится выше (он не может находиться ниже или в стороне, так как все основные ребра направлены вниз). и , в старших единичных битах мы получим путь от корня по основным ребрам до этих вершин. При этом, про те биты, которые отвечают за уровни ниже , ничего не известно. Поэтому, нужно их обнулить. Умножение и деление на обнулят ненужные биты. После этого, для нахождения по основным ребрам, нужно найти в наименее значимый единичный бит. Формула имеено это и делает. |
Найдем вершину
, где . На прошлом шаге была найдена вершина . Если бы в двоичном дереве были представлены все вершины, то это и было бы ответом. Но такой вершины может не оказаться. Воспользуемся значениями и . Они характеризуют пути из вершин и к корню. С их помощью (с помощью операции логическое и), можно получить список вершин, через которые проходят оба эти пути и взять с пересечения самую низкую посещаемую обоими.Для этого можно воспользоваться описанным при построении методом для нахождения
. После этих действий нами был получен путь, в котором находится ответ. Осталось посмотреть на точки входа и на путь . Это можно сделать с помощью посчитанной функции : найти , где — вершина предпоследнего пути в пути. Тогда, поднявшись от нее на один вверх по начальному дереву, получим искомую точку входа.Имея две точки входа, можно, как и в первом случае, сравнить их по высоте и выбрать более высокое из них.
Оценка сложности
Построение
Подсчет каждого из массивов занимает
. Это можно сделать, например, обходом в глубину.Запрос
Здесь нужно сделать
действий для ответа на запрос.