Машина Тьюринга — различия между версиями
м (→Введение: добавил название на английском) |
(→Определение: описание машин-распознавателей и машин-преобразователей) |
||
Строка 39: | Строка 39: | ||
* если <tex>\delta(q, B) = \langle p, y, \rightarrow \rangle</tex>, то <tex>\langle w, q, \varepsilon \rangle \vdash \langle wy, p, \varepsilon \rangle</tex> | * если <tex>\delta(q, B) = \langle p, y, \rightarrow \rangle</tex>, то <tex>\langle w, q, \varepsilon \rangle \vdash \langle wy, p, \varepsilon \rangle</tex> | ||
* если <tex>\delta(q, B) = \langle p, y, \downarrow \rangle</tex>, то <tex>\langle w, q, \varepsilon \rangle \vdash \langle w, p, y \rangle</tex> | * если <tex>\delta(q, B) = \langle p, y, \downarrow \rangle</tex>, то <tex>\langle w, q, \varepsilon \rangle \vdash \langle w, p, y \rangle</tex> | ||
+ | |||
+ | === Результат работы === | ||
+ | Машину Тьюринга можно рассматривать как распознаватель слов языка. Пусть <tex>M</tex> — машина Тьюринга, распознаваемый ей язык определяется как <tex>\mathcal L(M) = \{ x \in \Sigma^* \mid \exists y, z \in \Pi^*: \langle \varepsilon, S, x \rangle \vdash^* \langle y, Y, z \rangle \}</tex>. | ||
+ | |||
+ | Также можно рассматривать машины Тьюринга как преобразователь входных данных в выходные. Машина <tex>M</tex> задаёт вычислимую функцию <tex>f</tex>, причём <tex>f(x) = y \Leftrightarrow \langle \varepsilon, S, x \rangle \vdash^* \langle z, Y, y \rangle</tex>. Примеры машин-распознавателей и машин-преобразователей будут даны ниже. |
Версия 22:13, 5 декабря 2012
Содержание
Введение
Машина Тьюринга (Turing machine) — абстрактный вычислитель, предложенный британским математиком Аланом Тьюрингом в 1936 году для формализации понятия алгоритма.
Неформально машина Тьюринга определяется как устройство, состоящее из двух частей:
- бесконечной одномерной ленты, разделённой на ячейки,
- головкой, которая представляет из себя детерминированный конечный автомат.
При запуске машины Тьюринга на ленте написано входное слово, причём на первом символе этого слова находится головка, а слева и справа от него записаны пустые символы. Каждый шаг головка может перезаписать символ под лентой и сместиться на одну ячейку, если автомат приходит в допускающее или отвергающее состояние, то работа машины Тьюринга завершается.
Определение
Определение машины
Формально машина Тьюринга определяется как кортеж из восьми элементов
, где- — алфавит, из букв которого могут состоять входные слова
- — символы, которые могут быть записаны на ленту в процессе работы машины
- — пробельный символ (от слова blank)
- — множество состояний управляющего автомата
- — допускающее состояние автомата
- — отвергающее состояние автомата
- — стартовое состояние автомата
- — всюду определённая функция перехода автомата
Отметим, что существуют различные вариации данного выше определения (например, без отвергающего состояния или с множеством допускающих состояний), которые не влияют на вычислительные способности машины Тьюринга. В дальнейшем мы будем для простоты предполагать, что головка в процессе работы не записывает на ленту символ
. Это не ограничивает вычислительной мощности машин Тьюринга, поскольку для каждой машины можно сопоставить аналогичную ей, но не пищущую на ленту.Определение процесса работы
Кроме формального определения самой машины требуется также формально описать процесс её работы. Назовём конфигурацией машины Тьюринга тройку
, где — текущее состояние автомата, а — строки слева и справа от головки до первого пробельного символа соответственно. В данной записи головка находится над ячейкой, на которой написана первая буква (или , если ).В дальнейшем используются следующие обозначения:
,Определим на конфигурациях отношение перехода
:- если , то
- если , то
- если , то
Особо следует рассмотреть случай переходов по пробельному символу:
- если , то
- если , то
- если , то
Результат работы
Машину Тьюринга можно рассматривать как распознаватель слов языка. Пусть
— машина Тьюринга, распознаваемый ей язык определяется как .Также можно рассматривать машины Тьюринга как преобразователь входных данных в выходные. Машина
задаёт вычислимую функцию , причём . Примеры машин-распознавателей и машин-преобразователей будут даны ниже.