Лемма о рукопожатиях — различия между версиями
Gr1n (обсуждение | вклад) |
Gr1n (обсуждение | вклад) (→Регулярный граф) |
||
Строка 42: | Строка 42: | ||
==== Регулярный граф ==== | ==== Регулярный граф ==== | ||
− | В графе с <tex> n </tex> вершинами | + | |
+ | В [http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B3%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D1%8B%D0%B9_%D0%B3%D1%80%D0%B0%D1%84 регулярном графе] с <tex> n </tex> вершинами ровно <tex>\frac{kn}{2} </tex> ребер. | ||
'''Следствие.''' Если степень каждой вершины нечетна и равна <tex> k</tex>, то количество ребер кратно <tex> k </tex>. | '''Следствие.''' Если степень каждой вершины нечетна и равна <tex> k</tex>, то количество ребер кратно <tex> k </tex>. | ||
+ | |||
+ | '''Доказательство.''' Действительно, так как степень каждой вершины нечетна, то число вершин в графе четно(так сумма степеней всех вершин четна). Пусть <tex> n = 2r </tex>, то равенство принимает вид <tex>|E| =\frac{kn}{2} = \frac{2kr}{2}=kr </tex>, то есть количество ребер кратно <tex> k</tex>. | ||
== Источники == | == Источники == |
Версия 16:22, 10 декабря 2012
Содержание
Лемма о рукопожатиях
Неориентированный граф
Лемма: |
Сумма степеней всех вершин графа (или мультиграфа без петель) — четное число, равное удвоенному числу ребер:
|
Доказательство: |
Возьмем пустой граф. Сумма степеней вершин такого графа равна нулю. При добавлении ребра, связывающего любые две вершины, сумма всех степеней увеличивается на 2 единицы. Таким образом, сумма всех степеней вершин четна и равна удвоенному числу ребер. |
Например, для следующего графа выполнено:
Следствие 1. В любом графе число вершин нечетной степени четно.
Следствие 2. Число ребер в полном графе
.
Ориентированный граф
Лемма: |
Сумма входящих и исходящих степеней всех вершин ориентированного графа — четное число, равное удвоенному числу ребер:
|
Доказательство: |
Аналогично доказательству леммы о рукопожатиях неориентированном графе. То есть возьмем пустой граф и будем добавлять в него ребра. При этом каждое добавление ребра увеличивает на единицу сумму входящих и на единицу сумму исходящих степеней. Таким образом, сумма входящих и исходящих степеней всех вершин ориентированного графа четна и равна удвоенному числу ребер. |
Бесконечный граф
В бесконечном графе лемма не работает, даже в случае с конечным числом вершин нечетной степени. Покажем это на примере.
При выборе бесконечного пути из вершины
(см. рисунок справа) имеем путь, в котором все вершины кроме стартовой имеют четную степень, что противоречит следствию из леммы.Регулярный граф
В регулярном графе с вершинами ровно ребер.
Следствие. Если степень каждой вершины нечетна и равна
, то количество ребер кратно .Доказательство. Действительно, так как степень каждой вершины нечетна, то число вершин в графе четно(так сумма степеней всех вершин четна). Пусть
, то равенство принимает вид , то есть количество ребер кратно .Источники
- Lecture Notes on Graph Theory By Tero Harju, Department of Mathematics University of Turku, 2011 — с. 7-8
- Handshaking lemma — Wikipedia