Алгоритм Борувки — различия между версиями
Watson (обсуждение | вклад) (→Реализация) |
Watson (обсуждение | вклад) (→Описание алгоритма) |
||
Строка 4: | Строка 4: | ||
==Описание алгоритма== | ==Описание алгоритма== | ||
− | Пока <tex> | + | Пока <tex>T</tex> не является деревом |
# Для каждой компоненты связанности находим минимальное по весу ребро, которое связывает вершину из данной компоненты с вершиной, не принадлежащей данной компоненте. | # Для каждой компоненты связанности находим минимальное по весу ребро, которое связывает вершину из данной компоненты с вершиной, не принадлежащей данной компоненте. | ||
− | # Добавим в <tex> | + | # Добавим в <tex>T</tex> все ребра, которые хотя бы для одной компоненты оказались минимальными. |
Получившееся множество <tex>F</tex> является минимальным остовным деревом графа <tex>G</tex>. | Получившееся множество <tex>F</tex> является минимальным остовным деревом графа <tex>G</tex>. | ||
− | |||
− | |||
==Реализация== | ==Реализация== |
Версия 02:06, 15 декабря 2012
Алгоритм Борувки — алгоритм поиска минимального остовного дерева (minimum spanning tree, MST) во взвешенном неориентированном связном графе. Впервые был опубликован в 1926 году Отакаром Борувкой.
Описание алгоритма
Пока
не является деревом- Для каждой компоненты связанности находим минимальное по весу ребро, которое связывает вершину из данной компоненты с вершиной, не принадлежащей данной компоненте.
- Добавим в все ребра, которые хотя бы для одной компоненты оказались минимальными.
Получившееся множество
является минимальным остовным деревом графа .Реализация
Graph Boruvka(Graph G) while T.size < n init() findComp(T) // разбивает граф T на компоненты связынности обычным dfs-ом for uvE if u.color != v.color if minEdge[u.comp].w < uv.w minEdge[u.comp] = uv if minEdge[v.comp].w < uv.w minEdge[v.comp] = uv) for k K // K - множество компонент связанности в T T.addEdge(minEdge[k]) return T; |
Вход: граф
Выход: минимальный остов графа
1)
1) Отсортируем по весу ребер.
2) Заведем систему непересекающихся множеств (DSU) и инициализируем ее множеством .
3) Перебирая ребра в порядке увеличения веса, смотрим, принадлежат ли и одному множеству. Если нет, то объединяем множества, в которых лежат и , и добавляем ребро к .
Асимптотика
Сортировка
Работа с DSU займет , где - обратная функция Аккермана, которая не превосходит 4 во всех практических приложениях и которую можно принять за константу.
Алгоритм работает за .
Литература
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)