Получение следующего объекта — различия между версиями
Korektur (обсуждение | вклад) (→Специализация алгоритма для генерации следующего разбиения на подмножества) |
Korektur (обсуждение | вклад) (→Специализация алгоритма для генерации следующего разбиения на подмножества) |
||
Строка 71: | Строка 71: | ||
непересекающихся подмножеств множеств. | непересекающихся подмножеств множеств. | ||
}} | }} | ||
− | Например для n = 5 существуют следующие разбиения: | + | Например для <tex>n = 5</tex> существуют следующие разбиения: |
<tex> \{1, 2, 3, 4, 5\}</tex> | <tex> \{1, 2, 3, 4, 5\}</tex> | ||
Строка 81: | Строка 81: | ||
<tex> \{1\}~\{2\}~\{3\}~\{4\}~\{5\}</tex> | <tex> \{1\}~\{2\}~\{3\}~\{4\}~\{5\}</tex> | ||
− | и т. д., всего таких разбиений для n = 5 существует 52. | + | и т. д., всего таких разбиений для <tex>n = 5</tex> существует 52. |
'''Примечание:''' | '''Примечание:''' | ||
Строка 95: | Строка 95: | ||
'''Рассмотрим алгоритм нахождения лексикографически следующего разбиения на подмножества:''' | '''Рассмотрим алгоритм нахождения лексикографически следующего разбиения на подмножества:''' | ||
− | *Будем хранить подмножества с помощью двумерного массива, например, разбиение {1, 2, 3} {4, 5} будет выглядеть так: | + | *Будем хранить подмножества с помощью двумерного массива, например, разбиение <tex> \{1, 2, 3\}~ \{4, 5\}</tex> будет выглядеть так: |
{| class="wikitable" border = 1 | {| class="wikitable" border = 1 | ||
Строка 109: | Строка 109: | ||
<code> | <code> | ||
− | // | + | // sets - матрица содержащая подмножества |
// used - массив в котором мы храним, удаленные элементы | // used - массив в котором мы храним, удаленные элементы | ||
− | for i = n downto 0 | + | '''for''' i = n '''downto''' 0 |
− | if | + | '''if''' можем добавить в конец подмножества элемент из used |
− | // добавляем | + | //добавляем |
− | break; | + | '''break;''' |
− | for j = a[i].size() - 1 downto 0 | + | '''for''' j = a[i].size() - 1 '''downto''' 0 |
− | if | + | '''if''' можем заменить элемент, другим элементом из массива used |
//заменяем | //заменяем | ||
− | break; | + | '''break;''' |
used.add(a[i][j]); //удаляем элемент и добавляем его в массив | used.add(a[i][j]); //удаляем элемент и добавляем его в массив | ||
− | + | //далее выведем все получившиеся подмножества | |
+ | |||
</code> | </code> | ||
Версия 21:08, 22 декабря 2012
Содержание
Алгоритм
Определение: |
Получение следующего объекта — это нахождение объекта, следующего за данным в лексикографическом порядке. |
Объект
называется следующим за , если и не найдется такого , что .Отсюда понятен алгоритм:
- Находим суффикс минимальной длины, который можно изменить без изменения префикса текущего объекта
- К оставшейся части дописываем минимальный возможный элемент (чтобы было выполнено правило )
- Дописываем минимальный возможный хвост
По построению получаем, что
— минимально возможный.Специализация алгоритма для генерации следующего битового вектора
- Находим минимальный суффикс, в котором есть 0, его можно увеличить, не меняя оставшейся части
- Вместо 0 записываем 1
- Дописываем минимально возможный хвост из нулей
for i = n downto 1 if a[i] == 0 a[i] = 1 for j = i + 1 to n a[j] = 0 break
Пример работы
0 | 1 | 0 | 1 | 1 | исходный битовый вектор |
^ | находим элемент 0 (самый правый) | ||||
0 | 1 | 1 | 1 | 1 | меняем его на 1 |
0 | 1 | 1 | 0 | 0 | меняем элементы правее на нули |
0 | 1 | 1 | 0 | 0 | следующий битовый вектор |
Специализация алгоритма для генерации следующей перестановки
- Двигаясь справа налево, находим элаемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример)
- Меняем его с минимальным элементом, большим нашего, стоящим правее
- Перевернем правую часть
for i = n - 1 downto 1 if a[i] < a[i + 1] // a[j] = min {a[j] > a[i], где j > i} swap(a[i], a[j]) reverse(a[i + 1] .. a[n]) break
Пример работы
1 | 3 | 2 | 5 | 4 | исходная перестановка |
^ | находим элемент, нарушающий убывающую последовательность | ||||
^ | минимальный элемент больше нашего | ||||
1 | 3 | 4 | 5 | 2 | меняем их местами |
1 | 3 | 4 | 2 | 5 | разворачивам правую часть |
1 | 3 | 4 | 2 | 5 | следующая перестановка |
Специализация алгоритма для генерации следующего разбиения на подмножества
Рассмотрим множество первых n натуральных чисел:
Определение: |
Разбиением на множества называется представление множества, как объединения одного или более, попарно непересекающихся подмножеств множеств. |
Например для
существуют следующие разбиения:
и т. д., всего таких разбиений для
существует 52.Примечание:
и - одно и то же разбиение на подмножества.Упорядочим все разбиения на множества Nn лексикографически. Для этого во-первых в каждом разбиении упорядочим множества лексикографически. Будем говорить, что подмножество
лексикографически меньше подмножества , если верно одно из следующих условий:- существует i такое, что , , для всех j < i: если и только если , и существует k > i такое что ;
- и i < j для всех и \ .
Разбиения упорядочены лексикографически следующим образом. Разбиение
лексикографически меньше разбиения если существует такое , что .
Рассмотрим алгоритм нахождения лексикографически следующего разбиения на подмножества:
- Будем хранить подмножества с помощью двумерного массива, например, разбиение будет выглядеть так:
1 | 2 | 3 |
4 | 5 |
- Двигаясь снизу вверх и справа налево, будем удалять элементы, записывая их в отдельный массив. Будем повторять эту операцию, пока не выполнится одно из условий ниже:
- Каждый раз, рассматривая новый элемент, будем пытаться заменить его уже удаленным элементом из нашего массива, так, чтобы не нарушалась возрастающая последовательность элементов в этом подмножестве. Из всех подходящих элементов выбираем минимальный. Важное замечание: мы не можем заменить 1ый элемент подмножества, мы можем только удалить его.
- Каждый раз, переходя в новое подмножество, будем пытаться дополнить его элементом из уже удаленных, так, чтобы не нарушалась возрастающая последовательность элементов в этом подмножестве. Из всех подходящих элементов выбираем минимальный.
- Допишем лексикографически минимальный хвост подмножеств из оставшихся элементов.
// sets - матрица содержащая подмножества // used - массив в котором мы храним, удаленные элементы for i = n downto 0 if можем добавить в конец подмножества элемент из used //добавляем break; for j = a[i].size() - 1 downto 0 if можем заменить элемент, другим элементом из массива used //заменяем break; used.add(a[i][j]); //удаляем элемент и добавляем его в массив //далее выведем все получившиеся подмножества
Пример работы
Рассмотрим следующее разбиение:
1 | 2 | 3 |
4 | 5 |
1 Шаг:
1 | 2 | 3 | |
4 | 5 | ||
^ | Удалили элемент 5. | ||
used |
2 Шаг:
1 | 2 | 3 | |
4 | |||
^ | Удалили элемент 4. Так как он является первым в подмножестве, то мы не можем заменить его на другой. | ||
5 | used |
3 Шаг:
1 | 2 | 3 | 4 | |
^ | Дополнили первое подмножество элементом 4 | |||
5 | used |
4 Шаг:
1 | 2 | 3 | 4 | |
5 | Дописали лексикографически минимальный хвост | |||
used |