Блокирующий поток — различия между версиями
Gromak (обсуждение | вклад) |
|||
Строка 5: | Строка 5: | ||
[[Файл:Блокпоток.png|240px|thumb|right|Рис. 1. Пропускные способности всех рёбер равны единице, по красным рёбрам течёт единичный поток.]] | [[Файл:Блокпоток.png|240px|thumb|right|Рис. 1. Пропускные способности всех рёбер равны единице, по красным рёбрам течёт единичный поток.]] | ||
+ | [[Файл:Блокирующийпоток.png|240px|thumb|right|Рис. 2. Пропускные способности всех рёбер равны единице, по красным рёбрам течёт единичный поток.]] | ||
Блокирующий поток не обязательно максимален (пример: см. рис. 1). [[Теорема Форда-Фалкерсона]] говорит о том, что поток будет максимальным тогда и только тогда, когда в остаточной сети не найдётся <tex>s \leadsto t</tex> пути; в блокирующем же потоке ничего не утверждается о существовании пути по рёбрам, появляющимся в остаточной сети. | Блокирующий поток не обязательно максимален (пример: см. рис. 1). [[Теорема Форда-Фалкерсона]] говорит о том, что поток будет максимальным тогда и только тогда, когда в остаточной сети не найдётся <tex>s \leadsto t</tex> пути; в блокирующем же потоке ничего не утверждается о существовании пути по рёбрам, появляющимся в остаточной сети. | ||
− | Более того, величина блокирующего потока может быть сколь угодно мала по сравнению с величиной максимального потока в сети (пример: см. рис. 2). | + | Более того, величина блокирующего потока может быть сколь угодно мала по сравнению с величиной максимального потока в сети (пример: см. рис. 2). В примере поток является блокирующим и имеет величину 1, в то время как максимальный можно делать сколь угодно большим, увеличивая количество вершин по той же схеме. |
== См. также == | == См. также == |
Версия 01:12, 25 декабря 2012
Определение: |
Блокирующий поток — такой поток | в данной сети , что любой путь содержит насыщенное этим потоком ребро. Иными словами, в данной сети не найдётся такого пути из истока в сток, вдоль которого можно беспрепятственно увеличить поток.
Блокирующий поток не обязательно максимален (пример: см. рис. 1). Теорема Форда-Фалкерсона говорит о том, что поток будет максимальным тогда и только тогда, когда в остаточной сети не найдётся пути; в блокирующем же потоке ничего не утверждается о существовании пути по рёбрам, появляющимся в остаточной сети.
Более того, величина блокирующего потока может быть сколь угодно мала по сравнению с величиной максимального потока в сети (пример: см. рис. 2). В примере поток является блокирующим и имеет величину 1, в то время как максимальный можно делать сколь угодно большим, увеличивая количество вершин по той же схеме.