Верхняя оценка хроматического числа длиной нечётного цикла — различия между версиями
Строка 5: | Строка 5: | ||
Опишем на графе следующий алгоритм раскраски: | Опишем на графе следующий алгоритм раскраски: | ||
*Из произвольной вершины <tex>v</tex> запусти алгоритм поиска в глубину. Пусть <tex>T</tex> {{---}} дерево обхода глубина графа <tex>G</tex> с корнем в вершине <tex>v</tex>. | *Из произвольной вершины <tex>v</tex> запусти алгоритм поиска в глубину. Пусть <tex>T</tex> {{---}} дерево обхода глубина графа <tex>G</tex> с корнем в вершине <tex>v</tex>. | ||
− | *Произвольную вершину <tex>u</tex>, покрасим в цвет <tex>dist(v,u)</tex> <tex> mod </tex> <tex> (\Delta + 1)</tex>, где <tex>dist(v,u)</tex>{{---}} расстояние между вершинами <tex>u,v</tex> в графe <tex>T</tex>. | + | *Произвольную вершину <tex>u</tex>, покрасим в цвет <tex>dist(v,u)</tex> <tex> \mod </tex> <tex> (\Delta + 1)</tex>, где <tex>dist(v,u)</tex>{{---}} расстояние между вершинами <tex>u,v</tex> в графe <tex>T</tex>. |
Докажем от противного, что после выполнения описанного алгоритма граф <tex>G</tex> будет правильно раскрашен. | Докажем от противного, что после выполнения описанного алгоритма граф <tex>G</tex> будет правильно раскрашен. | ||
Пусть <tex>\exists a,b \in V: (ab) \in E \land color(a) = color(b)</tex>, где <tex>color(v)</tex> {{---}} цвет вершины после выполнения алгоритма раскраски.Заметим, что для произвольной вершины графа <tex>p</tex>, <tex>dist(v,p) = color(p) + n(\Delta + 1)</tex> , <tex>n \ge 0 </tex>.Тогда, <tex>dist(v,a) - dist(v,b) = k(\Delta + 1)</tex>.Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то <tex> k \ge 1</tex>. То есть, вершины <tex>a,b</tex> лежат на простом цикле длины по крайней мере <tex>\Delta + 2</tex>.Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем <tex>\Delta</tex>. | Пусть <tex>\exists a,b \in V: (ab) \in E \land color(a) = color(b)</tex>, где <tex>color(v)</tex> {{---}} цвет вершины после выполнения алгоритма раскраски.Заметим, что для произвольной вершины графа <tex>p</tex>, <tex>dist(v,p) = color(p) + n(\Delta + 1)</tex> , <tex>n \ge 0 </tex>.Тогда, <tex>dist(v,a) - dist(v,b) = k(\Delta + 1)</tex>.Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то <tex> k \ge 1</tex>. То есть, вершины <tex>a,b</tex> лежат на простом цикле длины по крайней мере <tex>\Delta + 2</tex>.Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем <tex>\Delta</tex>. |
Версия 18:21, 9 января 2013
Лемма (оценка хроматического числа длиной максимального нечётного цикла): |
Пусть - произвольный связный неориентированный граф и - длина максимального простого цикла графа , . Тогда, . |
Доказательство: |
Опишем на графе следующий алгоритм раскраски:
Докажем от противного, что после выполнения описанного алгоритма граф Таким образом в графе будет правильно раскрашен. Пусть , где — цвет вершины после выполнения алгоритма раскраски.Заметим, что для произвольной вершины графа , , .Тогда, .Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то . То есть, вершины лежат на простом цикле длины по крайней мере .Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем . после выполнения алгоритма раскраски нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из , то есть правильно раскрашен в цвет, следовательно |