Лемма Бёрнсайда и Теорема Пойа — различия между версиями
(→Теорема Пойа) |
Korektur (обсуждение | вклад) |
||
Строка 56: | Строка 56: | ||
− | Рассмотрим некоторую перестановку <tex>k</tex> и некоторый элемент <tex>f</tex>. Под действием перестановки <tex>k</tex> элементы <tex>f</tex> передвигаются, как известно, по циклам перестановки. Заметим, что внутри каждого цикла перестановки должны находиться одинаковые элементы <tex>f</tex>. В то же время, для разных циклов никакой связи между значениями элементов не возникает. Таким образом, для каждого цикла перестановки <tex>k</tex> мы выбираем по одному значению, и, тем самым, мы получим все представления <tex>f</tex>, инвариантные относительно этой перестановки, т.е.: | + | Рассмотрим некоторую перестановку <tex>k</tex> и некоторый элемент <tex>f</tex>. Под действием перестановки <tex>k</tex> элементы <tex>f</tex> передвигаются, как известно, по циклам перестановки. Заметим, что так как в результате должно получаться fk = f, то внутри каждого цикла перестановки должны находиться одинаковые элементы <tex>f</tex>. В то же время, для разных циклов никакой связи между значениями элементов не возникает. Таким образом, для каждого цикла перестановки <tex>k</tex> мы выбираем по одному значению, и, тем самым, мы получим все представления <tex>f</tex>, инвариантные относительно этой перестановки, т.е.: |
<tex>I(k) = l^{P(k)}</tex> | <tex>I(k) = l^{P(k)}</tex> | ||
}} | }} |
Версия 10:34, 15 января 2013
Иногда требуется провести подсчет комбинаторных объектов с точностью до некоторого отношения эквивалетности. Если это отношение является отношением "с точностью до действия элементом группы", то такой подсчет можно провести с помощью Леммы Бернсайда.
Определение: |
Пусть группа | действует на множество . Неподвижной точкой для элемента называется такой элемент , для которого .
Содержание
Лемма Бёрнсайда
Лемма (Бёрнсайд): |
Пусть группа действует на множество . Будем называть два элемента и эквивалентными, если для некоторого . Тогда число классов эквивалентности равно сумме числа неподвижных точек по всем элементам группы , делённой на размер этой группы:
. Где — количество неподвижных точек для элемента . |
Доказательство: |
Так как - сумма неподвижных точек для элемента , то по определению .Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство: Рассмотрим правую часть равенства: Заметим, что Следовательно:. Очевидно, что Тогда получим:
Откуда следует, что ч.т.д. |
Теорема Пойа
Теорема Пойа является обобщением теоремы Бёрнсайда. Она также позволяет находить количество классов эквивалентности, но уже используя такую величину, как кол-во циклов в перестановке. В основе доказательства теоремы Пойа лежит лемма Бёрнсайда.
Теорема (Пойа): |
,где — кол-во различных классов эквивалентности, - кол-во циклов в перестановке , — кол-во различных состояний одного элемента. |
Доказательство: |
Для доказательства этой теорем достаточно установить следующее равенство
|