Преобразование Мёбиуса для получения коэффициентов полинома Жегалкина — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(final)
(final)
Строка 1: Строка 1:
Пусть задана булева функция <tex>f: B^n \rightarrow B, \;\; B=\{ 0; 1 \}</tex>. Любая булева функция представима в виде полинома Жегалкина, притом единственным образом.
+
{{В разработке}}
То есть
+
Пусть задана булева функция <tex>f: B^n \rightarrow B, \;\; B=\{ 0; 1 \}</tex>. Любая булева функция представима в виде полинома Жегалкина, притом единственным образом. Пусть <tex> i = (i _{1}, i _{2}, .. i _{n}), \;\; i _{k} = \{0 ; 1\}</tex>, и введем обозначение <tex> x ^{i _{k}} \sim \left\{\begin{matrix} x, \;\; i _{k}=1
<br/><br/>
+
\\ 1, \;\; i _{k}=0
: <math>f(x_{1},x_{2},...x_{n}) = \bigoplus _{1\leq k \leq n} \left [\bigoplus _{1\leq i_{1}<i_{2}<..<i_{k} \leq n} \alpha _{i_{1}i_{2},..i_{k}}x_{i_{1}}x_{i_{2}}...x_{i_{k}}  \right ],</math>
+
\end{matrix}\right. </tex> &nbsp;&nbsp; Тогда полином Жегалкина можно записать как:
 +
:<math> f(x) = \bigoplus _{i} \alpha _{i} \cdot x_{1}^{i_{1}} \cdot x_{2}^{i_{2}} \cdot ... \cdot x_{n}^{i_{n}}</math>,
 +
:где  <tex>\alpha _{i} \in \{ 0; 1 \}</tex>
  
:где  <tex>\alpha _{i} \in  \{ 0; 1 \}</tex>  &nbsp;&nbsp;  (<tex>i</tex> - вектор из <tex>i_{1}, i_{2},.. i_{k}</tex>).
+
Тогда отображение  <tex>f\rightarrow \alpha _{i} </tex> (то есть такое, которое по заданной функции определяет ее коэффициенты при членах полинома Жегалкина) является:
<br/>
 
Пусть <tex> m(i) = (m _{1}, m _{2}, .. m _{n}), \;\;</tex> где для всех индексов <tex>t=i _{k}, \;\; m _{t} = 1</tex>, а для остальных индексов <tex>t \neq i _{k}, \; m _{t} = 0</tex>. Тогда отображение  <tex>f\rightarrow \alpha _{i} </tex> (то есть такое, которое по заданной функции определяет ее коэффициенты при членах полинома Жегалкина) является:
 
  
: <math>\alpha _{i} = \bigoplus _{j\preceq  m(i)} f(j)</math>
+
: <math>\alpha _{i} = \bigoplus _{j\preceq  i} f(j)</math>
  
 
Такое отображение также называется '''преобразованием Мёбиуса'''.
 
Такое отображение также называется '''преобразованием Мёбиуса'''.
Строка 15: Строка 15:
 
Очевидно, функцию <tex> f </tex> можно записать и следующим образом:
 
Очевидно, функцию <tex> f </tex> можно записать и следующим образом:
  
: <math> f(x) = \bigoplus _{i} \alpha _{i} \cdot [x _{1} , \; \text {if} \; m _{1}] \cdot [x _{2} , \; \text {if} \; m _{2}] \cdot ... </math>
+
: <math> f(x) = \bigoplus _{i} \alpha _{i} \cdot [x _{1} , \; \text {if} \;\; i _{1}] \cdot [x _{2} , \; \text {if} \;\; i _{2}] \cdot ... \cdot [x _{n} , \; \text {if} \;\; i_{n}]</math>
  
Запись <tex>[x _{k} , \; \text {if} \; m _{k}]</tex> означает, что элелемент <tex> x_{k} </tex> присутствует в соответствующем члене полинома только если <tex> m_{k} = 1 </tex>.  
+
Запись <tex>[x _{k} , \; \text {if} \; i _{k}]</tex> означает, что элелемент <tex> x_{k} </tex> присутствует в соответствующем члене полинома только если <tex> i_{k} = 1 </tex>.  
 
Отсюда ясно, что
 
Отсюда ясно, что
 
   
 
   
: <math> f(x) = \bigoplus _{m(i) \leq x} \alpha _{i} </math>.
+
: <math> f(x) = \bigoplus _{i \preceq x} \alpha _{i} </math>.
  
 
Таким образом, если применить '''преобразование Мёбиуса''' к функции, а затем вновь применить то же преобразование к получившейся функции, тогда вновь получим исходную функцию <tex>f</tex>. То есть '''преобразование Мёбиуса''' обратно самому себе.
 
Таким образом, если применить '''преобразование Мёбиуса''' к функции, а затем вновь применить то же преобразование к получившейся функции, тогда вновь получим исходную функцию <tex>f</tex>. То есть '''преобразование Мёбиуса''' обратно самому себе.

Версия 20:51, 7 октября 2010

Эта статья находится в разработке!

Пусть задана булева функция [math]f: B^n \rightarrow B, \;\; B=\{ 0; 1 \}[/math]. Любая булева функция представима в виде полинома Жегалкина, притом единственным образом. Пусть [math] i = (i _{1}, i _{2}, .. i _{n}), \;\; i _{k} = \{0 ; 1\}[/math], и введем обозначение [math] x ^{i _{k}} \sim \left\{\begin{matrix} x, \;\; i _{k}=1 \\ 1, \;\; i _{k}=0 \end{matrix}\right. [/math]    Тогда полином Жегалкина можно записать как:

[math] f(x) = \bigoplus _{i} \alpha _{i} \cdot x_{1}^{i_{1}} \cdot x_{2}^{i_{2}} \cdot ... \cdot x_{n}^{i_{n}}[/math],
где [math]\alpha _{i} \in \{ 0; 1 \}[/math]

Тогда отображение [math]f\rightarrow \alpha _{i} [/math] (то есть такое, которое по заданной функции определяет ее коэффициенты при членах полинома Жегалкина) является:

[math]\alpha _{i} = \bigoplus _{j\preceq i} f(j)[/math]

Такое отображение также называется преобразованием Мёбиуса.



Очевидно, функцию [math] f [/math] можно записать и следующим образом:

[math] f(x) = \bigoplus _{i} \alpha _{i} \cdot [x _{1} , \; \text {if} \;\; i _{1}] \cdot [x _{2} , \; \text {if} \;\; i _{2}] \cdot ... \cdot [x _{n} , \; \text {if} \;\; i_{n}][/math]

Запись [math][x _{k} , \; \text {if} \; i _{k}][/math] означает, что элелемент [math] x_{k} [/math] присутствует в соответствующем члене полинома только если [math] i_{k} = 1 [/math]. Отсюда ясно, что

[math] f(x) = \bigoplus _{i \preceq x} \alpha _{i} [/math].

Таким образом, если применить преобразование Мёбиуса к функции, а затем вновь применить то же преобразование к получившейся функции, тогда вновь получим исходную функцию [math]f[/math]. То есть преобразование Мёбиуса обратно самому себе.