Компактный оператор — различия между версиями
(UNLOCK) |
(→Пример) |
||
Строка 15: | Строка 15: | ||
Рассмотрим пространство <tex> C[0,1] </tex>. | Рассмотрим пространство <tex> C[0,1] </tex>. | ||
− | Пусть <tex> K( | + | Пусть <tex> K(t, s) </tex> — непрерывно на <tex> [0,1]\times[0,1] </tex> и ограничено: <tex> | K(t,s) | \leq M </tex>. |
− | <tex> A(x,t) = \int\limits_0^1 K(t,s) x(s) ds </tex>, где <tex> x(s) \in C[0,1] </tex>. | + | Введем оператор <tex>A: C[0,1] \to C[0,1]</tex> как <tex> A(x,t) = \int\limits_0^1 K(t,s) x(s) ds </tex>, где <tex> x(s) \in C[0,1] </tex>. |
− | + | Зададим норму <tex> \| x \| = \max\limits_{s \in [0,1]} | x(s) | \implies |x(s)| \leq \| x \| </tex> | |
<tex> | A(x,t) | \leq M \cdot \| x \| </tex> | <tex> | A(x,t) | \leq M \cdot \| x \| </tex> | ||
Строка 28: | Строка 28: | ||
# <tex> \forall x \in T : \|x\| \leq M </tex> | # <tex> \forall x \in T : \|x\| \leq M </tex> | ||
# <tex> \forall \varepsilon > 0 \ \exists \delta > 0 : | t'' - t' | < \delta \implies \forall x \in T : | x(t') - x(t'') | < \varepsilon </tex> — '''равностепенная непрерывность'''. | # <tex> \forall \varepsilon > 0 \ \exists \delta > 0 : | t'' - t' | < \delta \implies \forall x \in T : | x(t') - x(t'') | < \varepsilon </tex> — '''равностепенная непрерывность'''. | ||
+ | |||
+ | Рассмотрим <tex>V = \{ x \mid \|x\| \le 1\}</tex> и <tex>A(V)</tex>. | ||
{{TODO|t=дальше какой-то треш, кажется, хотим показать, что A компактный}} | {{TODO|t=дальше какой-то треш, кажется, хотим показать, что A компактный}} |
Версия 15:30, 8 июня 2013
Напоминание: все рассматриваемые пространства считаем Банаховыми.
Определение: |
Множество называется относительно компактным (предкомпактным), если его замыкание компактно |
Определение: |
Линейный ограниченный оператор | называется компактным, если переводит любое ограниченное множество из в относительно компактное множество из .
Из определения ясно, что мы получаем усиление ограниченности, так как любое относительно компактное множество — ограничено.
Пример
Рассмотрим пространство
. Пусть — непрерывно на и ограничено: .Введем оператор
как , где .Зададим норму
— относительно компактное
- — равностепенная непрерывность.
Рассмотрим
и .
TODO: дальше какой-то треш, кажется, хотим показать, что A компактный
Критерий проверки компактности
Замечание: в бесконечномерном пространстве шар не будет компактом (следствие из теоремы Рисса о почти перпендикуляре), следовательно,
— не компактен.Для определения компактности используется критерий Хаусдорфа: множество компактно тогда и только тогда, когда оно замкнуто и вполне ограниченно, то есть у него существует конечная -сеть.
Произведение компактных операторов
Утверждение: |
|
<wikitex>Докажем первый случай, второй доказывается аналогично. Рассмотрим единичный шар $V = \{ x \mid \ |
Утверждение (следствие): |
Если — компактный оператор, то он не может быть непрерывно обратимым. |
От противного: пусть | — компактный по доказанному утверждению, что невозможно в бесконечномерном случае.
Утверждение: |
— компактный — сепарабельно, то есть в существует всюду плотное подмножество. |
— счетное объединение шаров.
— относительно компактно. Используя теорему Хаусдорфа можно показать, что любое относительно компактное множество сепарабельно: объединение -сетей для от до счетно и оно будет всюду плотным в этом множестве. Счетное объединение сепарабельных множеств — сепарабельно, значит — сепарабельно. |