Fusion tree — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «'''Fusion tree''' {{---}} дерево поиска, позволяющее хранить <tex>n</tex> <tex>w</tex>-битных положительных чи...»)
 
Строка 8: Строка 8:
 
В Fusion tree вместо ключа <tex>x</tex> хранится <tex>Sketch(x)</tex> - последовательность битов <tex>x_{b_r}\ldots x_{b_1}</tex>. <tex>Sketch</tex> сохраняет порядок, то есть <tex>sketch(x) < sketch(y)</tex>, если <tex>x < y</tex>.
 
В Fusion tree вместо ключа <tex>x</tex> хранится <tex>Sketch(x)</tex> - последовательность битов <tex>x_{b_r}\ldots x_{b_1}</tex>. <tex>Sketch</tex> сохраняет порядок, то есть <tex>sketch(x) < sketch(y)</tex>, если <tex>x < y</tex>.
  
Обозначим <tex>rank_s u = |\{ t | t\in S, t\leqslant u\}|</tex>, <tex>sketch(x) = \hat x</tex>, <tex>S</tex> - множество ключей вершины.
 
 
==Поиск вершины==
 
==Поиск вершины==
Пусть <tex>\left \{ a_1,a_2\ldots a_k\right \}</tex> - множество ключей узла, <tex>q</tex> - ключ искомой вершины, <tex>l</tex> - количество бит в <tex>sketch(q)</tex>. Определим <tex>sketch(node)</tex> как число, составленное из едениц и <tex>sketch(a_i)</tex>, то есть <tex>sketch(node) = 1sketch(a_1)1sketch(a_2)\ldots 1scetch(a_k)</tex>. Вычтем из <tex>sketch(node)</tex> число <tex>shetch(q) * \underbrace{\overbrace{00\ldots 1}^{l + 1 bits}\overbrace{00\ldots 1}^{l + 1 bits}\ldots \overbrace{00\ldots 1}^{l + 1 bits}}_{k(l + 1)  bits} = 0sketch(q)\ldots 0sketch(q)</tex>. Применим к получившемуся побитовое ''AND'' c <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}</tex>, чтобы убрать лишние биты.
+
Пусть <tex>\left \{ a_1,a_2\ldots a_k\right \}</tex> - множество ключей узла, отсортированных по возрастанию, <tex>q</tex> - ключ искомой вершины, <tex>l</tex> - количество бит в <tex>sketch(q)</tex>.  
 +
===Succ(sketch(q)) и pred(sketch(q))===
 +
Определим <tex>sketch(node)</tex> как число, составленное из едениц и <tex>sketch(a_i)</tex>, то есть <tex>sketch(node) = 1sketch(a_1)1sketch(a_2)\ldots 1scetch(a_k)</tex>. Вычтем из <tex>sketch(node)</tex> число <tex>shetch(q) * \underbrace{\overbrace{00\ldots 1}^{l + 1 bits}\overbrace{00\ldots 1}^{l + 1 bits}\ldots \overbrace{00\ldots 1}^{l + 1 bits}}_{k(l + 1)  bits} = 0sketch(q)\ldots 0sketch(q)</tex>. В начале каждого блока, где <tex>sketch(a_i) \geqslant sketch(q)</tex>, сохранятся еденицы. Применим к получившемуся побитовое ''AND'' c <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}</tex>, чтобы убрать лишние биты.
  
 
<tex>(1sketch(a_1)\ldots 1scetch(a_k) - 0sketch(q)\ldots 0sketch(q))</tex> ''AND'' <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}=\overbrace{c_10\ldots0}^{l+1 bits} \ldots \overbrace{c_k0\ldots0}^{l+1 bits}</tex>
 
<tex>(1sketch(a_1)\ldots 1scetch(a_k) - 0sketch(q)\ldots 0sketch(q))</tex> ''AND'' <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}=\overbrace{c_10\ldots0}^{l+1 bits} \ldots \overbrace{c_k0\ldots0}^{l+1 bits}</tex>
  
Если <tex>sketch(a_i)< sketch(q)</tex>, то <tex>c_i = 0</tex>, в противном случае <tex>c_i = 1</tex>.
+
Если <tex>sketch(a_i)< sketch(q)</tex>, то <tex>c_i = 0</tex>, в противном случае <tex>c_i = 1</tex>. Так как ключи отсортированны по возрастанию, получив номер наиболее значащего бита, можно найти <tex>succ(sketch(q))</tex>.
 +
===Succ(q) и pred(q)===
 +
Пусть <tex>sketch(a_i) \leqslant sketch(q) \leqslant sketch(a_{i+1})</tex>. Среди всех ключей наибольший общий префикс с <tex>q</tex> будет иметь или <tex>a_i</tex> или <tex>a_{i+1}</tex>. Сравнивая ''a''XOR''q'' и ''b''XOR''q'', найдем какой из ключей имеет наибольший общий префикс с ''q'' (наименьшнее значение соответствует наибольшей длине).
 +
 
 +
Предположим, что ''p'' - наибольший общий перфикс, а ''y'' его длина, ''a_j'' - ключ, имеющий наибольший общий префикс с ''q'' (j = i или i+1).
 +
* если ''q>a_j'', то ''y + 1'' бит ''q'' равен еденице, а ''y + 1'' бит ''a_j'' равен 0. Так как общий префикс ''a_j'' и ''q'' является наибольшим, то не существет ключа с префиксом ''p1''.Значит, ''q'' больше всех ключей с префиксом меньшим либо равным ''p''. Найдем pred e = p01\ldots 11, который одновременно будет равен pred(q);
 +
* если < - найдем succ e = p10\ldots 00. Это будет succ(q).
 +
 
 +
Длина наибольшего общего префикса двух ''w''-битных чисел ''a'' и ''b'' может быть вычислена с помощью нахождения индекса наиболее значащего бита в побитовом XOR ''a'' и ''b''.
 +
==Вычисление sketch(x)==
 +
Чтобы найти sketch за константное время, будем вычислять sketch(x), имеющий все существенные биты в нужном порядке, но содержащий лишние нули.
 +
 
 +
1) уберем все несущественные биты <tex>x' = x</tex> AND <tex>\displaystyle \sum_{i=0}^{r-1}2^{b_i}</tex>;
 +
 
 +
2) умножением на некоторое число <tex>M = \displaystyle\sum_{i=0}^{r-1}2^{m_i}</tex> сместим все существенные биты в блок меньшего размера
 +
 
 +
<tex>x'*M = \displaystyle(\sum_{i=0}^{r-1}x_{b_i}2^{b_i})(\sum_{i=0}^{r-1}2^{m_i}) = \sum_{i=0}^{r-1}\sum_{j=0}^{r-1}x_{b_i}2^{b_i+m_j}</tex>;
 +
 
 +
3) применив побитовое AND уберем лишние биты, появившиеся в результате умножения;
 +
 
 +
<tex>\displaystyle\sum_{i=0}^{r-1}\sum_{j=0}^{r-1}x_{b_i}2^{b_i+m_j}</tex> AND <tex>\displaystyle\sum_{i=0}^{r-1}2^{b_i+m_i} = \sum_{i=0}^{r-1}x_{b_i}2^{b_i+m_i}</tex>;
 +
 
 +
4) сделаем сдвиг вправо на <tex>m_0 + b_0</tex> бит.
 +
{{Утверждение
 +
|id=
 +
|author=
 +
|about=
 +
|statement=Дана последовательность из r чисел <tex>b_0<b_1<\ldots <b_{r-1}</tex>. Тогда существует последовательность <tex>m_0<m_1\ldots <m_{r-1}</tex>, такая что:
 +
 
 +
1) все <tex>b_i + m_j</tex> различны, для <tex>0\leqslant i,j \leqslant r-1</tex>;
 +
 
 +
2) <tex>b_1 + m_2\leqslant b_2 + m_2\leqslant \ldots \leqslant b_{r-1} + m_{r-1}</tex>;
 +
 
 +
3) <tex>(b_{r-1} + m_{r-1}) - (b_0 + m_0) \leqslant r^4</tex>.
 +
|proof=
 +
Выберем некоторые, таким образом, чтобы. Предположим, что мы выбрали. mt' != mi' + bj - bk A i,j,k. В противном случае . Всего t*r*r <= r^3 недопустимых значений для mt', поэтому всегда можно найти хотя бы одно значение.
 +
 
 +
Чтобы получить mi, выбираем каждый раз наименьшие mi' и прибавляем подходящее число кратное r^3, такое что mi+ci<mi+l+Ci+l<=mi+ci+r3.
 +
}}
 +
Первые два условия необходимы для того, чтобы сохранить все существенные биты в нужном порядке. Третье условие позволит поместить sketch узла в w-битный тип. Так как r<=B-1, то sketch(node) будет занимать B*(r*4 + 1) <= B*((B-1)^4 + 1) <= B^5 = (w^{1/5})^5 = w бит.
 +
==Индекс наиболее значащего бита==
 +
Чтобы найти в w-битном числе ''x'' индекс самого старшего бита, содержащего еденицу, разделим ''x'' на <tex>\sqrt{w}</tex> блоков по <tex>\sqrt{w}</tex> бит.
 +
<tex>x = \underbrace{0101}_{\sqrt{w}}\; \underbrace{0000}_{\sqrt{w}}\; \underbrace{1000}_{\sqrt{w}}\; \underbrace{1101}_{\sqrt{w}}</tex>. Далее найдем первый непустой блок и индекс первого еденичного бита в нем.
 +
 
 +
1)Поиск непустых блоков.
 +
  a. Определим какие блоки имеют еденицу в первом бите. Применим побитовое AND к ''x'' и константой ''F''
 +
 
 +
<tex>   
 +
$$
 +
\begin{array}{r}
 +
AND
 +
\begin{array}{r}
 +
x = 0101\; 0000\; 1000\; 1101\\
 +
F = 1000\; 1000\; 1000\; 1000\\
 +
\end{array} \\
 +
\hline
 +
\begin{array}{r}
 +
t_1 = \underline{0}000\; \underline{0}000\; \underline{1}000\; \underline{1}000
 +
\end{array}
 +
\end{array}
 +
$$</tex>
 +
  b. Определим, содержат ли остальные биты еденицы.
 +
 
 +
Вычислим <tex>x\; XOR \; t_1</tex>.
 +
 
 +
<tex>   
 +
$$
 +
\begin{array}{r}
 +
XOR
 +
\begin{array}{r}
 +
t_1 = 0000\; 0000\; 1000\; 1000\\
 +
x = 0101\; 0000\; 1000\; 1101\\
 +
\end{array} \\
 +
\hline
 +
\begin{array}{r}
 +
t_2 = 0\underline{101}\; 0\underline{000}\; 0\underline{000}\; 0\underline{101}
 +
\end{array}
 +
\end{array}
 +
$$</tex>
 +
 
 +
Вычтем от <tex>F\; t_2</tex>. Если какой-нибудь бит ''F'' обнулится, значит, соответствующий блок содержит еденицы.
 +
 
 +
<tex>   
 +
$$
 +
\begin{array}{r}
 +
-
 +
\begin{array}{r}
 +
F = 1000\; 1000\; 1000\; 1000\\
 +
t_2 = 0\underline{101}\; 0\underline{000}\; 0\underline{000}\; 0\underline{101}\\
 +
\end{array} \\
 +
\hline
 +
\begin{array}{r}
 +
t_3 = \underline{0}xxx\; \underline{1}000\; \underline{1}000\; \underline{0}xxx
 +
\end{array}
 +
\end{array}
 +
$$</tex>
 +
 
 +
Чтобы найти блоки, содержащие еденицы, вычислим <tex>t_3\; XOR \; F</tex>.
 +
 
 +
<tex>   
 +
$$
 +
\begin{array}{r}
 +
XOR
 +
\begin{array}{r}
 +
F = 1000\; 1000\; 1000\; 1000\\
 +
t_3 = \underline{0}xxx\; \underline{1}000\; \underline{1}000\; \underline{0}xxx\\
 +
\end{array} \\
 +
\hline
 +
\begin{array}{r}
 +
t_4  = \underline{1}000\; \underline{0}000\; \underline{0}000\; \underline{1}000
 +
\end{array}
 +
\end{array}
 +
$$</tex>
 +
 
 +
Первый бит в каждом блоке <tex>y = t_1\; OR \;t_4</tex> содержит еденицу, если соответствующий блок ''x'' ненулевой.
 +
 
 +
<tex>$$
 +
\begin{array}{r}
 +
OR
 +
\begin{array}{r}
 +
t_1 = \underline{0}000\; \underline{0}000\; \underline{1}000\; \underline{1}000\\
 +
t_4  = \underline{1}000\; \underline{0}000\; \underline{0}000\; \underline{1}000\\
 +
\end{array} \\
 +
\hline
 +
\begin{array}{r}
 +
y  = \underline{1}000\; \underline{0}000\; \underline{1}000\; \underline{1}000
 +
\end{array}
 +
\end{array}
 +
$$</tex>

Версия 02:24, 10 июня 2013

Fusion tree — дерево поиска, позволяющее хранить [math]n[/math] [math]w[/math]-битных положительных чисел, используя [math]O(n)[/math] памяти, и выполнять операции поиска за время [math]O(\log_{w} n)[/math].

Структура

Fusion tree — это B-дерево, такое что:

  • у всех вершин, кроме листьев, [math]B = w^{1/5}[/math] детей;
  • время, за которое определяется в каком поддереве находится вершина, равно [math]O(1)[/math].

Такое время работы достигается за счет хранения дополнительной информации в вершинах. Рассмотрим цифровой бор из ключей узла дерева. Всего [math]B - 1[/math] ветвящихся вершин. Биты, соответствующие уровням дерева, в которых происходит ветвление, назовем существенными и обозначим их номера [math]b_1, b_2\ldots b_r[/math]. Количество существенных битов [math]r[/math] не больше чем [math]B - 1[/math].

В Fusion tree вместо ключа [math]x[/math] хранится [math]Sketch(x)[/math] - последовательность битов [math]x_{b_r}\ldots x_{b_1}[/math]. [math]Sketch[/math] сохраняет порядок, то есть [math]sketch(x) \lt sketch(y)[/math], если [math]x \lt y[/math].

Поиск вершины

Пусть [math]\left \{ a_1,a_2\ldots a_k\right \}[/math] - множество ключей узла, отсортированных по возрастанию, [math]q[/math] - ключ искомой вершины, [math]l[/math] - количество бит в [math]sketch(q)[/math].

Succ(sketch(q)) и pred(sketch(q))

Определим [math]sketch(node)[/math] как число, составленное из едениц и [math]sketch(a_i)[/math], то есть [math]sketch(node) = 1sketch(a_1)1sketch(a_2)\ldots 1scetch(a_k)[/math]. Вычтем из [math]sketch(node)[/math] число [math]shetch(q) * \underbrace{\overbrace{00\ldots 1}^{l + 1 bits}\overbrace{00\ldots 1}^{l + 1 bits}\ldots \overbrace{00\ldots 1}^{l + 1 bits}}_{k(l + 1) bits} = 0sketch(q)\ldots 0sketch(q)[/math]. В начале каждого блока, где [math]sketch(a_i) \geqslant sketch(q)[/math], сохранятся еденицы. Применим к получившемуся побитовое AND c [math]\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}[/math], чтобы убрать лишние биты.

[math](1sketch(a_1)\ldots 1scetch(a_k) - 0sketch(q)\ldots 0sketch(q))[/math] AND [math]\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}=\overbrace{c_10\ldots0}^{l+1 bits} \ldots \overbrace{c_k0\ldots0}^{l+1 bits}[/math]

Если [math]sketch(a_i)\lt sketch(q)[/math], то [math]c_i = 0[/math], в противном случае [math]c_i = 1[/math]. Так как ключи отсортированны по возрастанию, получив номер наиболее значащего бита, можно найти [math]succ(sketch(q))[/math].

Succ(q) и pred(q)

Пусть [math]sketch(a_i) \leqslant sketch(q) \leqslant sketch(a_{i+1})[/math]. Среди всех ключей наибольший общий префикс с [math]q[/math] будет иметь или [math]a_i[/math] или [math]a_{i+1}[/math]. Сравнивая aXORq и bXORq, найдем какой из ключей имеет наибольший общий префикс с q (наименьшнее значение соответствует наибольшей длине).

Предположим, что p - наибольший общий перфикс, а y его длина, a_j - ключ, имеющий наибольший общий префикс с q (j = i или i+1).

  • если q>a_j, то y + 1 бит q равен еденице, а y + 1 бит a_j равен 0. Так как общий префикс a_j и q является наибольшим, то не существет ключа с префиксом p1.Значит, q больше всех ключей с префиксом меньшим либо равным p. Найдем pred e = p01\ldots 11, который одновременно будет равен pred(q);
  • если < - найдем succ e = p10\ldots 00. Это будет succ(q).

Длина наибольшего общего префикса двух w-битных чисел a и b может быть вычислена с помощью нахождения индекса наиболее значащего бита в побитовом XOR a и b.

Вычисление sketch(x)

Чтобы найти sketch за константное время, будем вычислять sketch(x), имеющий все существенные биты в нужном порядке, но содержащий лишние нули.

1) уберем все несущественные биты [math]x' = x[/math] AND [math]\displaystyle \sum_{i=0}^{r-1}2^{b_i}[/math];

2) умножением на некоторое число [math]M = \displaystyle\sum_{i=0}^{r-1}2^{m_i}[/math] сместим все существенные биты в блок меньшего размера

[math]x'*M = \displaystyle(\sum_{i=0}^{r-1}x_{b_i}2^{b_i})(\sum_{i=0}^{r-1}2^{m_i}) = \sum_{i=0}^{r-1}\sum_{j=0}^{r-1}x_{b_i}2^{b_i+m_j}[/math];

3) применив побитовое AND уберем лишние биты, появившиеся в результате умножения;

[math]\displaystyle\sum_{i=0}^{r-1}\sum_{j=0}^{r-1}x_{b_i}2^{b_i+m_j}[/math] AND [math]\displaystyle\sum_{i=0}^{r-1}2^{b_i+m_i} = \sum_{i=0}^{r-1}x_{b_i}2^{b_i+m_i}[/math];

4) сделаем сдвиг вправо на [math]m_0 + b_0[/math] бит.

Утверждение:
Дана последовательность из r чисел [math]b_0\lt b_1\lt \ldots \lt b_{r-1}[/math]. Тогда существует последовательность [math]m_0\lt m_1\ldots \lt m_{r-1}[/math], такая что:

1) все [math]b_i + m_j[/math] различны, для [math]0\leqslant i,j \leqslant r-1[/math];

2) [math]b_1 + m_2\leqslant b_2 + m_2\leqslant \ldots \leqslant b_{r-1} + m_{r-1}[/math];

3) [math](b_{r-1} + m_{r-1}) - (b_0 + m_0) \leqslant r^4[/math].
[math]\triangleright[/math]

Выберем некоторые, таким образом, чтобы. Предположим, что мы выбрали. mt' != mi' + bj - bk A i,j,k. В противном случае . Всего t*r*r <= r^3 недопустимых значений для mt', поэтому всегда можно найти хотя бы одно значение.

Чтобы получить mi, выбираем каждый раз наименьшие mi' и прибавляем подходящее число кратное r^3, такое что mi+ci<mi+l+Ci+l<=mi+ci+r3.
[math]\triangleleft[/math]

Первые два условия необходимы для того, чтобы сохранить все существенные биты в нужном порядке. Третье условие позволит поместить sketch узла в w-битный тип. Так как r<=B-1, то sketch(node) будет занимать B*(r*4 + 1) <= B*((B-1)^4 + 1) <= B^5 = (w^{1/5})^5 = w бит.

Индекс наиболее значащего бита

Чтобы найти в w-битном числе x индекс самого старшего бита, содержащего еденицу, разделим x на [math]\sqrt{w}[/math] блоков по [math]\sqrt{w}[/math] бит. [math]x = \underbrace{0101}_{\sqrt{w}}\; \underbrace{0000}_{\sqrt{w}}\; \underbrace{1000}_{\sqrt{w}}\; \underbrace{1101}_{\sqrt{w}}[/math]. Далее найдем первый непустой блок и индекс первого еденичного бита в нем.

1)Поиск непустых блоков.

 a. Определим какие блоки имеют еденицу в первом бите. Применим побитовое AND к x и константой F

[math] $$ \begin{array}{r} AND \begin{array}{r} x = 0101\; 0000\; 1000\; 1101\\ F = 1000\; 1000\; 1000\; 1000\\ \end{array} \\ \hline \begin{array}{r} t_1 = \underline{0}000\; \underline{0}000\; \underline{1}000\; \underline{1}000 \end{array} \end{array} $$[/math]

  b. Определим, содержат ли остальные биты еденицы. 

Вычислим [math]x\; XOR \; t_1[/math].

[math] $$ \begin{array}{r} XOR \begin{array}{r} t_1 = 0000\; 0000\; 1000\; 1000\\ x = 0101\; 0000\; 1000\; 1101\\ \end{array} \\ \hline \begin{array}{r} t_2 = 0\underline{101}\; 0\underline{000}\; 0\underline{000}\; 0\underline{101} \end{array} \end{array} $$[/math]

Вычтем от [math]F\; t_2[/math]. Если какой-нибудь бит F обнулится, значит, соответствующий блок содержит еденицы.

[math] $$ \begin{array}{r} - \begin{array}{r} F = 1000\; 1000\; 1000\; 1000\\ t_2 = 0\underline{101}\; 0\underline{000}\; 0\underline{000}\; 0\underline{101}\\ \end{array} \\ \hline \begin{array}{r} t_3 = \underline{0}xxx\; \underline{1}000\; \underline{1}000\; \underline{0}xxx \end{array} \end{array} $$[/math]

Чтобы найти блоки, содержащие еденицы, вычислим [math]t_3\; XOR \; F[/math].

[math] $$ \begin{array}{r} XOR \begin{array}{r} F = 1000\; 1000\; 1000\; 1000\\ t_3 = \underline{0}xxx\; \underline{1}000\; \underline{1}000\; \underline{0}xxx\\ \end{array} \\ \hline \begin{array}{r} t_4 = \underline{1}000\; \underline{0}000\; \underline{0}000\; \underline{1}000 \end{array} \end{array} $$[/math]

Первый бит в каждом блоке [math]y = t_1\; OR \;t_4[/math] содержит еденицу, если соответствующий блок x ненулевой.

[math]$$ \begin{array}{r} OR \begin{array}{r} t_1 = \underline{0}000\; \underline{0}000\; \underline{1}000\; \underline{1}000\\ t_4 = \underline{1}000\; \underline{0}000\; \underline{0}000\; \underline{1}000\\ \end{array} \\ \hline \begin{array}{r} y = \underline{1}000\; \underline{0}000\; \underline{1}000\; \underline{1}000 \end{array} \end{array} $$[/math]