Fusion tree — различия между версиями
Lena (обсуждение | вклад) |
Lena (обсуждение | вклад) |
||
Строка 10: | Строка 10: | ||
==Поиск вершины== | ==Поиск вершины== | ||
Пусть <tex>\left \{ a_1,a_2\ldots a_k\right \}</tex> - множество ключей узла, отсортированных по возрастанию, <tex>q</tex> - ключ искомой вершины, <tex>l</tex> - количество бит в <tex>sketch(q)</tex>. | Пусть <tex>\left \{ a_1,a_2\ldots a_k\right \}</tex> - множество ключей узла, отсортированных по возрастанию, <tex>q</tex> - ключ искомой вершины, <tex>l</tex> - количество бит в <tex>sketch(q)</tex>. | ||
− | === | + | ===Параллельное сравнение=== |
− | Определим <tex>sketch(node)</tex> как число, составленное из едениц и <tex>sketch(a_i)</tex>, то есть <tex>sketch(node) = 1sketch(a_1)1sketch(a_2)\ldots 1scetch(a_k)</tex>. Вычтем из <tex>sketch(node)</tex> число <tex>shetch(q) * \underbrace{\overbrace{00\ldots 1}^{l + 1 bits}\overbrace{00\ldots 1}^{l + 1 bits}\ldots \overbrace{00\ldots 1}^{l + 1 bits}}_{k(l + 1) bits} = 0sketch(q)\ldots 0sketch(q)</tex>. В начале каждого блока, где <tex>sketch(a_i) \geqslant sketch(q)</tex>, сохранятся еденицы. Применим к получившемуся побитовое ''AND'' c <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}</tex>, чтобы убрать лишние биты. | + | Сначала найдем succ(sketch(q)) и pred(sketch(q)). Определим <tex>sketch(node)</tex> как число, составленное из едениц и <tex>sketch(a_i)</tex>, то есть <tex>sketch(node) = 1sketch(a_1)1sketch(a_2)\ldots 1scetch(a_k)</tex>. Вычтем из <tex>sketch(node)</tex> число <tex>shetch(q) * \underbrace{\overbrace{00\ldots 1}^{l + 1 bits}\overbrace{00\ldots 1}^{l + 1 bits}\ldots \overbrace{00\ldots 1}^{l + 1 bits}}_{k(l + 1) bits} = 0sketch(q)\ldots 0sketch(q)</tex>. В начале каждого блока, где <tex>sketch(a_i) \geqslant sketch(q)</tex>, сохранятся еденицы. Применим к получившемуся побитовое ''AND'' c <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}</tex>, чтобы убрать лишние биты. |
− | <tex>(1sketch(a_1)\ldots 1scetch(a_k) - 0sketch(q)\ldots 0sketch(q))</tex> ''AND'' <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}=\overbrace{c_10\ldots0}^{l+1 bits} \ldots \overbrace{c_k0\ldots0}^{l+1 bits}</tex> | + | <tex>L = (1sketch(a_1)\ldots 1scetch(a_k) - 0sketch(q)\ldots 0sketch(q))</tex> ''AND'' <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}=\overbrace{c_10\ldots0}^{l+1 bits} \ldots \overbrace{c_k0\ldots0}^{l+1 bits}</tex> |
− | Если <tex>sketch(a_i)< sketch(q)</tex>, то <tex>c_i = 0</tex>, в противном случае <tex>c_i = 1</tex>. | + | Если <tex>sketch(a_i)< sketch(q)</tex>, то <tex>c_i = 0</tex>, в противном случае <tex>c_i = 1</tex>. |
+ | Теперь надо найти количество едениц в L. Умножим L на <tex>\underbrace{0\ldots 01}_{l + 1 bits}\ldots \underbrace{0\ldots 01}_{l+1 bits}</tex>, тогда все еденицы сложатся в первом блоке результата, и, чтобы получить количество едениц, сдвинем его вправо. | ||
===Succ(q) и pred(q)=== | ===Succ(q) и pred(q)=== | ||
Пусть <tex>sketch(a_i) \leqslant sketch(q) \leqslant sketch(a_{i+1})</tex>. Среди всех ключей наибольший общий префикс с <tex>q</tex> будет иметь или <tex>a_i</tex> или <tex>a_{i+1}</tex>. Сравнивая ''a''XOR''q'' и ''b''XOR''q'', найдем какой из ключей имеет наибольший общий префикс с ''q'' (наименьшнее значение соответствует наибольшей длине). | Пусть <tex>sketch(a_i) \leqslant sketch(q) \leqslant sketch(a_{i+1})</tex>. Среди всех ключей наибольший общий префикс с <tex>q</tex> будет иметь или <tex>a_i</tex> или <tex>a_{i+1}</tex>. Сравнивая ''a''XOR''q'' и ''b''XOR''q'', найдем какой из ключей имеет наибольший общий префикс с ''q'' (наименьшнее значение соответствует наибольшей длине). | ||
Строка 129: | Строка 130: | ||
$$</tex> | $$</tex> | ||
− | Первый бит в каждом блоке <tex>y = t_1\; OR \;t_4</tex> содержит еденицу, если соответствующий блок ''x'' ненулевой. | + | c)Первый бит в каждом блоке <tex>y = t_1\; OR \;t_4</tex> содержит еденицу, если соответствующий блок ''x'' ненулевой. |
<tex>$$ | <tex>$$ | ||
Строка 144: | Строка 145: | ||
\end{array} | \end{array} | ||
$$</tex> | $$</tex> | ||
+ | |||
+ | 2) найдем sketch(y), чтобы сместить все нужные биты в один блок. Существенными битами в данном случае будут первые биты каждого блока, поэтому <tex>b_i = \sqrt{w} - 1 + i\sqrt{w}</tex>. | ||
+ | |||
+ | Будем использовать <tex>m_j = w - (\sqrt{w}-1) - j\sqrt{w} +j</tex>. Тогда <tex>b_i + m_j = w + (i - j)\sqrt{w} + j</tex>. Все суммы различны при <tex>0\leqslant i, j < \sqrt{w} </tex>. Все <tex>b_i + m_i = w + i</tex> возрастают, и <tex>(b_{\sqrt{w} - 1} + m_{\sqrt{w} - 1}) - (b_0 + m_0) = \sqrt{w} - 1</tex>. Чтобы найти sketch(y), умножим y на m и сдвинем вправо на w бит. | ||
+ | |||
+ | 3)Найдем первый ненулевой блок. Для этого надо найти первую еденицу в sketch(y). Как и при поиске succ(sketch(q)) и pred(sketch(q)) используем параллельное сравнение sketch(y) с <tex>2^0, 2^1 \ldots 2^{\sqrt{w} - 1}</tex>. В результате сравнения получим номер первого ненулевого блока <tex>c</tex>. | ||
+ | |||
+ | 4) найдем номер d первого еденичного бита в найденном блоке так же как и в предыдущем пункте. | ||
+ | |||
+ | 5) инедекс наиболее значащего бита будет равен <tex>c\sqrt{w}+d</tex>. | ||
+ | |||
+ | Каждый шаг выполняется за <tex>O(1)</tex>, поэтому всего потребуется <tex>O(1)</tex> времени, чтобы найти индекс. |
Версия 12:50, 10 июня 2013
Fusion tree — дерево поиска, позволяющее хранить
-битных положительных чисел, используя памяти, и выполнять операции поиска за время .Содержание
Структура
Fusion tree — это B-дерево, такое что:
- у всех вершин, кроме листьев, детей;
- время, за которое определяется в каком поддереве находится вершина, равно .
Такое время работы достигается за счет хранения дополнительной информации в вершинах. Рассмотрим цифровой бор из ключей узла дерева. Всего
ветвящихся вершин. Биты, соответствующие уровням дерева, в которых происходит ветвление, назовем существенными и обозначим их номера . Количество существенных битов не больше чем .В Fusion tree вместо ключа
хранится - последовательность битов . сохраняет порядок, то есть , если .Поиск вершины
Пусть
- множество ключей узла, отсортированных по возрастанию, - ключ искомой вершины, - количество бит в .Параллельное сравнение
Сначала найдем succ(sketch(q)) и pred(sketch(q)). Определим
как число, составленное из едениц и , то есть . Вычтем из число . В начале каждого блока, где , сохранятся еденицы. Применим к получившемуся побитовое AND c , чтобы убрать лишние биты.AND
Если
, то , в противном случае . Теперь надо найти количество едениц в L. Умножим L на , тогда все еденицы сложатся в первом блоке результата, и, чтобы получить количество едениц, сдвинем его вправо.Succ(q) и pred(q)
Пусть
. Среди всех ключей наибольший общий префикс с будет иметь или или . Сравнивая aXORq и bXORq, найдем какой из ключей имеет наибольший общий префикс с q (наименьшнее значение соответствует наибольшей длине).Предположим, что p - наибольший общий перфикс, а y его длина, a_j - ключ, имеющий наибольший общий префикс с q (j = i или i+1).
- если q>a_j, то y + 1 бит q равен еденице, а y + 1 бит a_j равен 0. Так как общий префикс a_j и q является наибольшим, то не существет ключа с префиксом p1.Значит, q больше всех ключей с префиксом меньшим либо равным p. Найдем pred e = p01\ldots 11, который одновременно будет равен pred(q);
- если < - найдем succ e = p10\ldots 00. Это будет succ(q).
Длина наибольшего общего префикса двух w-битных чисел a и b может быть вычислена с помощью нахождения индекса наиболее значащего бита в побитовом XOR a и b.
Вычисление sketch(x)
Чтобы найти sketch за константное время, будем вычислять sketch(x), имеющий все существенные биты в нужном порядке, но содержащий лишние нули.
1) уберем все несущественные биты
AND ;2) умножением на некоторое число
сместим все существенные биты в блок меньшего размера;
3) применив побитовое AND уберем лишние биты, появившиеся в результате умножения;
AND ;
4) сделаем сдвиг вправо на
бит.Утверждение: |
Дана последовательность из r чисел . Тогда существует последовательность , такая что:
1) все различны, для ;2) 3) ; . |
Выберем некоторые, таким образом, чтобы. Предположим, что мы выбрали. mt' != mi' + bj - bk A i,j,k. В противном случае . Всего t*r*r <= r^3 недопустимых значений для mt', поэтому всегда можно найти хотя бы одно значение. Чтобы получить mi, выбираем каждый раз наименьшие mi' и прибавляем подходящее число кратное r^3, такое что mi+ci<mi+l+Ci+l<=mi+ci+r3. |
Первые два условия необходимы для того, чтобы сохранить все существенные биты в нужном порядке. Третье условие позволит поместить sketch узла в w-битный тип. Так как r<=B-1, то sketch(node) будет занимать B*(r*4 + 1) <= B*((B-1)^4 + 1) <= B^5 = (w^{1/5})^5 = w бит.
Индекс наиболее значащего бита
Чтобы найти в w-битном числе x индекс самого старшего бита, содержащего еденицу, разделим x на
блоков по бит. . Далее найдем первый непустой блок и индекс первого еденичного бита в нем.1)Поиск непустых блоков.
a. Определим какие блоки имеют еденицу в первом бите. Применим побитовое AND к x и константой F
b. Определим, содержат ли остальные биты еденицы.
Вычислим
.
Вычтем от
. Если какой-нибудь бит F обнулится, значит, соответствующий блок содержит еденицы.
Чтобы найти блоки, содержащие еденицы, вычислим
.
c)Первый бит в каждом блоке
содержит еденицу, если соответствующий блок x ненулевой.
2) найдем sketch(y), чтобы сместить все нужные биты в один блок. Существенными битами в данном случае будут первые биты каждого блока, поэтому
.Будем использовать
. Тогда . Все суммы различны при . Все возрастают, и . Чтобы найти sketch(y), умножим y на m и сдвинем вправо на w бит.3)Найдем первый ненулевой блок. Для этого надо найти первую еденицу в sketch(y). Как и при поиске succ(sketch(q)) и pred(sketch(q)) используем параллельное сравнение sketch(y) с
. В результате сравнения получим номер первого ненулевого блока .4) найдем номер d первого еденичного бита в найденном блоке так же как и в предыдущем пункте.
5) инедекс наиболее значащего бита будет равен
.Каждый шаг выполняется за
, поэтому всего потребуется времени, чтобы найти индекс.