Базис Шаудера — различия между версиями
(вроде привел в адекватный вид) |
|||
Строка 21: | Строка 21: | ||
{{TODO|t=доказать, доказательство есть в Люстернике-Соболеве}} | {{TODO|t=доказать, доказательство есть в Люстернике-Соболеве}} | ||
}} | }} | ||
− | |||
− | |||
Определим биективный линейный оператор <tex>T: F \to X</tex> как <tex>T \alpha = \sum\limits_{n=1}^\infty \alpha_n e_n</tex>. | Определим биективный линейный оператор <tex>T: F \to X</tex> как <tex>T \alpha = \sum\limits_{n=1}^\infty \alpha_n e_n</tex>. | ||
Строка 34: | Строка 32: | ||
почти конечномерность компактного оператора | почти конечномерность компактного оператора | ||
|statement= | |statement= | ||
− | Итак, если <tex>X</tex> — банахово пространство с базисом Шаудера, <tex>A:X \to X</tex> — компактный, то для всех <tex>\varepsilon > 0</tex> существует разложение оператора <tex>A</tex> в сумму двух операторов: <tex>A = A_1 + A_2</tex> такое, что: | + | Итак, если <tex>X</tex> — банахово пространство с базисом Шаудера, <tex>A:X \to X</tex> — компактный, то для всех <tex>\varepsilon > 0</tex> существует разложение оператора <tex>A</tex> в сумму двух компактных операторов: <tex>A = A_1 + A_2</tex> такое, что: |
# <tex>\operatorname{dim}(R(A_1)) < +\infty</tex> | # <tex>\operatorname{dim}(R(A_1)) < +\infty</tex> | ||
Строка 53: | Строка 51: | ||
<tex>A = IA = S_n A + R_n A = A_1 + A_2</tex>. | <tex>A = IA = S_n A + R_n A = A_1 + A_2</tex>. | ||
− | + | <tex>R(A_1) \subset \mathcal L(e_1, \ldots, e_n)</tex>, то есть, для всех <tex>n</tex>, <tex>A_1</tex> — конечномерный оператор. | |
− | |||
− | <tex>R(A_1) \subset \mathcal L(e_1, \ldots, e_n)</tex>, то есть, <tex> | ||
− | |||
− | |||
− | + | Докажем теперь вторую часть теоремы: покажем, что для всех <tex>\varepsilon > 0</tex> найдется <tex>n_0</tex> такое, что <tex>\|R_{n_0} A \| < \varepsilon</tex>. | |
− | <tex> | + | Рассмотрим <tex>\overline V</tex> — единичный шар в <tex>X</tex>, <tex>M = A(\overline V)</tex> — относительно компактно, следовательно, для любого <tex>\varepsilon > 0</tex> есть конечная <tex>\varepsilon</tex>-сеть <tex>z_1, \ldots, z_p</tex>. |
<tex>\forall y \in M \exists z_j:\ \|y - z_j\| < \varepsilon</tex> | <tex>\forall y \in M \exists z_j:\ \|y - z_j\| < \varepsilon</tex> | ||
Строка 72: | Строка 66: | ||
Значит, <tex>\|R_n y \| \le (2 + C) \varepsilon</tex>. | Значит, <tex>\|R_n y \| \le (2 + C) \varepsilon</tex>. | ||
− | |||
− | |||
<tex>R_n(Ax) \stackrel{n \to \infty}{\rightrightarrows} 0</tex> на <tex> \overline V </tex>, так как <tex>R_n(y) \stackrel{n \to \infty}{\rightrightarrows} 0</tex> на <tex>M</tex>. | <tex>R_n(Ax) \stackrel{n \to \infty}{\rightrightarrows} 0</tex> на <tex> \overline V </tex>, так как <tex>R_n(y) \stackrel{n \to \infty}{\rightrightarrows} 0</tex> на <tex>M</tex>. | ||
Получили <tex>\forall \varepsilon > 0 \exists n_0: \|R_{n_0} (Ax)\| < \varepsilon\ \forall x \in \overline{V}</tex>, то есть, <tex>\|R_{n_0}A\| < \varepsilon</tex>. | Получили <tex>\forall \varepsilon > 0 \exists n_0: \|R_{n_0} (Ax)\| < \varepsilon\ \forall x \in \overline{V}</tex>, то есть, <tex>\|R_{n_0}A\| < \varepsilon</tex>. | ||
+ | |||
+ | В итогде, примем <tex>A_1 = S_{n_0}A</tex>, <tex>A_2 = R_{n_0}A</tex> | ||
+ | |||
+ | {{TODO|t=компактность?}} | ||
}} | }} | ||
[[Категория: Функциональный анализ 3 курс]] | [[Категория: Функциональный анализ 3 курс]] |
Версия 12:10, 10 июня 2013
Выясним структуру компактного оператора в специальном случае — когда
имеет базис Шаудера.
Определение: |
Базисом Шаудера в банаховом пространстве | называется множество его элементов такое, что у любого в существует единственное разложение .
Примеры:
- ортонормированный базис в Гильбертовом пространстве — базис Шаудера
- в и тоже есть базис Шаудера
- но не у всех банаховых пространств он есть
Пусть в
есть базис Шаудера, тогда между и — бесконечными последовательностями есть биекция. Определим — это линейное пространство.Так как ряд сходится,
можно превратить в НП, определив норму как .Утверждение: |
Пространство относительно этой нормы — Банахово. |
TODO: доказать, доказательство есть в Люстернике-Соболеве |
Определим биективный линейный оператор
как .Покажем, что он ограничен:
, то есть .Так как теореме Банаха об обратном операторе, обратный оператор также ограничен: , то есть, .
и — банаховы, поТеорема (почти конечномерность компактного оператора): |
Итак, если — банахово пространство с базисом Шаудера, — компактный, то для всех существует разложение оператора в сумму двух компактных операторов: такое, что:
|
Доказательство: |
В полученном выше соотношении , раскроем нормы: , а значит,Для каждого , определим на элементах два оператора: и .По выше полученным неравенствам, , то есть нормы всех ограничены числом .Запишем оператор как , тогда , .Это значит, что нормы всех остаточных операторов ограничены числом .Пусть — компактный.. , то есть, для всех , — конечномерный оператор. Докажем теперь вторую часть теоремы: покажем, что для всех найдется такое, что .Рассмотрим — единичный шар в , — относительно компактно, следовательно, для любого есть конечная -сеть .
, поэтому . Возьмем , тогда .Значит, .на , так как на . Получили , то есть, .В итогде, примем ,
|