Обратная матрица — различия между версиями
(→Ссылки) |
|||
Строка 2: | Строка 2: | ||
|definition='''Обратная матрица''' - такая матрица <tex>A^{-1}</tex>, при умножении на которую, исходная матрица <tex>A</tex> даёт в результате единичную матрицу <tex>E</tex> | |definition='''Обратная матрица''' - такая матрица <tex>A^{-1}</tex>, при умножении на которую, исходная матрица <tex>A</tex> даёт в результате единичную матрицу <tex>E</tex> | ||
: <math>\! AA^{-1} = A^{-1}A = E</math> | : <math>\! AA^{-1} = A^{-1}A = E</math> | ||
+ | }} | ||
+ | ==Обратимость в алгебре== | ||
+ | {{Определение | ||
+ | |definition=Пусть <tex>X</tex> - алгебра над <tex>F</tex>. <tex>e∈X</tex> называется единицей <tex>X</tex>, если <tex>∀x∈X: e*x=x*e=x</tex>, причем <tex>e</tex> единственна | ||
}} | }} | ||
+ | {{Определение | ||
+ | |definition=Пусть в алгебре <tex>X: x*y=e</tex>, тогда <tex>X</tex> называется левым обратным по отношению к <tex>y</tex>, а <tex>y</tex> - правым обратным по отношению к <tex>x</tex> | ||
+ | }} | ||
+ | |||
+ | {{Определение | ||
+ | |definition=Пусть <tex>z∈X</tex>. Левый обратный элементу <tex>z</tex>, являющийся одновременно и правым обратным к нему, называется обратным и обозначается <tex>z^{-1}</tex>. При этом сам элемент называется обратимым. | ||
+ | }} | ||
==Критерий обратимости матрицы== | ==Критерий обратимости матрицы== | ||
{{Теорема | {{Теорема |
Версия 20:00, 13 июня 2013
Определение: |
Обратная матрица - такая матрица | , при умножении на которую, исходная матрица даёт в результате единичную матрицу
Содержание
Обратимость в алгебре
Определение: |
Пусть | - алгебра над . называется единицей , если , причем единственна
Определение: |
Пусть в алгебре | , тогда называется левым обратным по отношению к , а - правым обратным по отношению к
Определение: |
Пусть | . Левый обратный элементу , являющийся одновременно и правым обратным к нему, называется обратным и обозначается . При этом сам элемент называется обратимым.
Критерий обратимости матрицы
Теорема: |
Квадратная матрица обратима (имеет обратную матрицу) тогда и только тогда, когда она невырожденная, то есть . |
Доказательство: |
определитель НЕ равен нулю
Тогда то есть, обратима справа.
|
Свойства обратной матрицы
Методы нахождения обратной матрицы
Метод Гаусса для нахождения обратной матрицы
Возьмём две матрицы: саму
и . Приведём матрицу к единичной матрице методом Гаусса. После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной .Пример
Найдем обратную матрицу для матрицы
- 1) Для начала убедимся, что ее определитель не равен нулю(она невырожденная).
- 2) Справа от исходной матрицы припишем единичную.
- 3) Методом Гаусса приведем левую матрицу к единичной, применяя все операции одновременно и к левой, и к правой матрицам.
- 4)
Метод присоединенной матрицы
, где — присоединенная матрица;
Определение: |
Присоединенная(союзная, взаимная) матрица — матрица, составленная из алгебраических дополнений для соответствующих элементов исходной матрицы. |
Исходная матрица:
Где:
- — присоединённая(союзная, взаимная) матрица;
- — алгебраические дополнения исходной матрицы;
- — элементы исходной матрицы.
Алгебраическим дополнением элемента
матрицы называется число,
где
— дополнительный минор, определитель матрицы, получающейся из исходной матрицы путем вычёркивания i -й строки и j -го столбца.
Алгоритм получения обратной матрицы
- заменить каждый элемент исходной матрицы на его алгебраическое дополнение,
- транспонировать полученную матрицу - в результате будет получена союзная матрица,
- разделить каждый элемент союзной матрицы на определитель исходной матрицы.