|
|
Строка 7: |
Строка 7: |
| *2. Для любых положительных взаимно простых <tex> a_1 </tex> и <tex> a_2 </tex> имеем <tex> \theta(a_1 a_2) = \theta(a_1)\theta(a_2) </tex> | | *2. Для любых положительных взаимно простых <tex> a_1 </tex> и <tex> a_2 </tex> имеем <tex> \theta(a_1 a_2) = \theta(a_1)\theta(a_2) </tex> |
| }} | | }} |
− |
| |
− | == Функция Мёбиуса ==
| |
− |
| |
− | {{Определение
| |
− | |definition=
| |
− | Функция '''Мёбиуса''' <tex> \mu (a) </tex> определяется для всех целых положительных '''a'''. Она задается равенствами: <br>
| |
− | * <tex> \mu (a) = 0 </tex>, если '''a''' делится на квадрат, отличный от 1.
| |
− | * <tex> \mu (a) = {(-1)}^k </tex>, если '''a''' не делится на квадрат, где '''k''' — число простых делителей '''a'''.
| |
− | }}
| |
− |
| |
− | ==== Свойства ====
| |
− | *1. Функция Мёбиуса мультипликативна.
| |
− | *2. Сумма значений функции Мёбиуса по всем делителям целого числа '''n''', не равного единице, равна нулю
| |
− | : <tex>\sum_{d | n} \mu(d) = \begin{cases} 1,&n=1,\\ 0,&n>1.\end{cases}</tex>
| |
| | | |
| == Свертка Дирихле == | | == Свертка Дирихле == |
Версия 18:56, 8 октября 2010
Эта статья находится в разработке!
Мультипликативность функции
Определение: |
Функция [math] \theta (a) [/math] называется мультипликативной, если выполнены следующие условия:
- 1. Функция [math] \theta (a) [/math] определена для всех целых положительных a и не обращается в 0 хотя бы при одном таком a
- 2. Для любых положительных взаимно простых [math] a_1 [/math] и [math] a_2 [/math] имеем [math] \theta(a_1 a_2) = \theta(a_1)\theta(a_2) [/math]
|
Свертка Дирихле
Определение: |
Сверткой Дирихле двух мультипликативных функций f и g, называется функция вида:
[math] (f*g)(n) = \sum_{d|n} f(d)g(\frac{n}{d})[/math]
|
Свойство. [math] (f*g) [/math] - мультпликативна.
Доказательство свойства:
[math] (m;n)=1 \text{ ,} (f*g)(mn) = \sum_{d|n} f(d)g(\frac{nm}{d}) = \sum_{d_1|n,d_2|m} f(d_1 d_2)g(\frac{nm}{d_1 d_2}) = [/math]
[math] = \sum_{d_1|n,d_2|m} f(d_1) f(d_2)g(\frac{n}{d_1}) g(\frac{m}{d_2}) = (\sum_{d_1|n} f(d_1)g(\frac{n}{d_1}))*(\sum_{d_2|m} f(d_2)g(\frac{m}{d_2})) [/math] ч.т.д.