Теорема Фари — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 3: Строка 3:
 
{{Определение
 
{{Определение
 
|id=def1
 
|id=def1
|definition=Триангуляция графа представление графа на плоскости в таком виде, что каждая его грань ограничена тремя ребрами (является треугольником).
+
|definition=Триангуляция графа {{---}} представление графа на плоскости в таком виде, что каждая его грань ограничена тремя ребрами (является треугольником).
 
}}
 
}}
  
 
{{Определение
 
{{Определение
 
|id=def2
 
|id=def2
|definition=Разделяющий треугольник цикл длины 3 в графе G, внутри и снаружи которого находятся вершины графа.
+
|definition=Разделяющий треугольник {{---}} цикл длины <tex>3</tex> в графе <tex>G</tex>, внутри и снаружи которого находятся вершины графа.
 
}}
 
}}
  
Строка 18: Строка 18:
 
{{Теорема
 
{{Теорема
 
|about=Фари
 
|about=Фари
|statement= Любой планарный граф имеет представление на плоскости, в котором все его ребра будут прямыми.
+
|statement=Любой планарный граф имеет представление на плоскости, в котором все его ребра будут прямыми.
 
|proof=
 
|proof=
  
Докажем теорему для плоской триангуляции графа G. Ее можно достичь, добавив в G необходимое количество ребер. Применим индукцию по числу вершин V(G). Предположим, что графы с числом вершин, меньшим V, мы можем нарисовать требуемым образом.  
+
Докажем теорему для плоской триангуляции графа <tex>G</tex>. Ее можно достичь, добавив в G необходимое количество ребер. Применим индукцию по числу вершин <tex>V</tex>. Предположим, что графы с числом вершин, меньшим <tex>V</tex>, мы можем нарисовать требуемым образом.  
База: V=3 тривиально
+
 
Переход: V>=4
+
База: <tex>V=3</tex> {{---}} тривиально.
Рассмотрим ребро vw. Если в G нет разделяющих треугольников, то vw – любое. Иначе vw – ребро, инцидентное вершине, находящейся внутри самого глубокого разделяющего треуголька в G. Тогда vw – граница двух граней vwp & vwq.  
+
 
 +
Переход: <tex>V \geqslant 4</tex>  
 +
Рассмотрим ребро <tex>vw</tex>. Если в <tex>G</tex> нет разделяющих треугольников, то <tex>vw</tex> – любое. Иначе <tex>vw</tex> – ребро, инцидентное вершине, находящейся внутри самого глубокого разделяющего треуголька в <tex>G</tex>. Тогда <tex>vw</tex> – граница двух граней <tex>vwp</tex> и <tex>vwq</tex>.  
  
 
[[File:Fary2.png|250px|Рисунок 2]]
 
[[File:Fary2.png|250px|Рисунок 2]]

Версия 00:10, 12 ноября 2013

Теорема была независимо доказана Клаусом Вагнером в 1936 года, Иштваном Фари в 1948ом году и Штейном в 1951ом году.


Определение:
Триангуляция графа — представление графа на плоскости в таком виде, что каждая его грань ограничена тремя ребрами (является треугольником).


Определение:
Разделяющий треугольник — цикл длины [math]3[/math] в графе [math]G[/math], внутри и снаружи которого находятся вершины графа.


Разделяющий треугольник изображён ниже.

Рисунок 1


Теорема (Фари):
Любой планарный граф имеет представление на плоскости, в котором все его ребра будут прямыми.
Доказательство:
[math]\triangleright[/math]

Докажем теорему для плоской триангуляции графа [math]G[/math]. Ее можно достичь, добавив в G необходимое количество ребер. Применим индукцию по числу вершин [math]V[/math]. Предположим, что графы с числом вершин, меньшим [math]V[/math], мы можем нарисовать требуемым образом.

База: [math]V=3[/math] — тривиально.

Переход: [math]V \geqslant 4[/math] Рассмотрим ребро [math]vw[/math]. Если в [math]G[/math] нет разделяющих треугольников, то [math]vw[/math] – любое. Иначе [math]vw[/math] – ребро, инцидентное вершине, находящейся внутри самого глубокого разделяющего треуголька в [math]G[/math]. Тогда [math]vw[/math] – граница двух граней [math]vwp[/math] и [math]vwq[/math].

Рисунок 2

Если vw не в разделяющем треугольнике p & q – любые общие соседи v и w. Пусть (vp, vw, vq, vx_1, vx_2 … vx_k) & (wq, wv, wp, wy_1, wy_2 … wy_l) – обход по часовой стрелке ребер, исходящих соостветсвенно из v и w. Пусть G' – планарная триангуляция, полученная из G стягиванием ребра vw в вершину s. Заменим пары параллельных ребер vq & wq на sq и vp & wp на sp. Получим вершину s, из которой исходят ребра (sp, sy_1, sy_2 … sy_l, sq, sx_1, sx_2 … sx_k) – по часовой стрелке.

Рисунок 3

Мы получили граф G', с меньшим числом вершин = V - 1 — то есть его можно уложить на плоскости требуемым образом: все ребра прямые (и сохранен обход по часовой стрелке ребер инцидентных s). Для любого E>0 обозначим C_E(s) — круг радиуса E, с вершиной s в центре. Для каждого соседа t вершины s в графе G' обозначим R_E(t) область, содержащую множество всех окрытых отрезков от t до каждой точки из C_E(s).

Возьмем E равным минимуму из всех расстояний от вершины s до инцидентных ей вершин и до отрезков, проходящих мимо нее.

Рисунок 4

Тогда получим, что все соседи t вершины s находятся снаружи C_E(s) и только ребра G', пересекающие R_E(t), являются инцидентными s.

Рисунок 5

Проведем линию L через вершину s так, чтобы вершина p лежла с одной ее стороны, а q — с другой (иначе L наложится на ребра sp & sq. ), и L никакое из ребер {sx_i : 1<i<k} и {sy_i : 1<i<l} не лежало на ней. Ребра sq & sq разбивают C_E(s) на две дуги: первая пересекает ребра {sx_i : 1<i<k}, а вторая — ребра {sy_i : 1<i<l}. L пересекает C_E(s) в двух точках. Расположим v & w в этих точках: v на дуге, пересекающей {sx_i : 1<i<k}, а w с другой стороны.

Рисунок 6

Удалим s и инцидентные ей ребра, нарисуем прямые ребра G, инцидентные v и w.

Рисунок 7

Получим, что vw лежит на L. Так как p и q лежат с разных сторон L, ребра, инцидентные v и w, не пересекаются. По выбору E, ребра, инцидентные v и w, не пересекают и другие ребра G. Таким образом желаемая укладка графа G достигнута.

Теперь мы можем удалить триангуляцию графа, оставив в графе лишь исходные (уже прямые) ребра.
[math]\triangleleft[/math]