Теорема Фари — различия между версиями
Valery (обсуждение | вклад) |
Valery (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|id=def1 | |id=def1 | ||
− | |definition=Триангуляция графа | + | |definition=Триангуляция графа {{---}} представление графа на плоскости в таком виде, что каждая его грань ограничена тремя ребрами (является треугольником). |
}} | }} | ||
{{Определение | {{Определение | ||
|id=def2 | |id=def2 | ||
− | |definition=Разделяющий треугольник | + | |definition=Разделяющий треугольник {{---}} цикл длины <tex>3</tex> в графе <tex>G</tex>, внутри и снаружи которого находятся вершины графа. |
}} | }} | ||
Строка 18: | Строка 18: | ||
{{Теорема | {{Теорема | ||
|about=Фари | |about=Фари | ||
− | |statement= Любой планарный граф имеет представление на плоскости, в котором все его ребра будут прямыми. | + | |statement=Любой планарный граф имеет представление на плоскости, в котором все его ребра будут прямыми. |
|proof= | |proof= | ||
− | Докажем теорему для плоской триангуляции графа G. Ее можно достичь, добавив в G необходимое количество ребер. Применим индукцию по числу вершин V | + | Докажем теорему для плоской триангуляции графа <tex>G</tex>. Ее можно достичь, добавив в G необходимое количество ребер. Применим индукцию по числу вершин <tex>V</tex>. Предположим, что графы с числом вершин, меньшим <tex>V</tex>, мы можем нарисовать требуемым образом. |
− | База: V=3 | + | |
− | Переход: V> | + | База: <tex>V=3</tex> {{---}} тривиально. |
− | Рассмотрим ребро vw. Если в G нет разделяющих треугольников, то vw – любое. Иначе vw – ребро, инцидентное вершине, находящейся внутри самого глубокого разделяющего треуголька в G. Тогда vw – граница двух граней vwp | + | |
+ | Переход: <tex>V \geqslant 4</tex> | ||
+ | Рассмотрим ребро <tex>vw</tex>. Если в <tex>G</tex> нет разделяющих треугольников, то <tex>vw</tex> – любое. Иначе <tex>vw</tex> – ребро, инцидентное вершине, находящейся внутри самого глубокого разделяющего треуголька в <tex>G</tex>. Тогда <tex>vw</tex> – граница двух граней <tex>vwp</tex> и <tex>vwq</tex>. | ||
[[File:Fary2.png|250px|Рисунок 2]] | [[File:Fary2.png|250px|Рисунок 2]] |
Версия 00:10, 12 ноября 2013
Теорема была независимо доказана Клаусом Вагнером в 1936 года, Иштваном Фари в 1948ом году и Штейном в 1951ом году.
Определение: |
Триангуляция графа — представление графа на плоскости в таком виде, что каждая его грань ограничена тремя ребрами (является треугольником). |
Определение: |
Разделяющий треугольник — цикл длины | в графе , внутри и снаружи которого находятся вершины графа.
Разделяющий треугольник изображён ниже.
Теорема (Фари): |
Любой планарный граф имеет представление на плоскости, в котором все его ребра будут прямыми. |
Доказательство: |
Докажем теорему для плоской триангуляции графа . Ее можно достичь, добавив в G необходимое количество ребер. Применим индукцию по числу вершин . Предположим, что графы с числом вершин, меньшим , мы можем нарисовать требуемым образом.База: — тривиально.Переход: Рассмотрим ребро . Если в нет разделяющих треугольников, то – любое. Иначе – ребро, инцидентное вершине, находящейся внутри самого глубокого разделяющего треуголька в . Тогда – граница двух граней и .Если vw не в разделяющем треугольнике p & q – любые общие соседи v и w. Пусть (vp, vw, vq, vx_1, vx_2 … vx_k) & (wq, wv, wp, wy_1, wy_2 … wy_l) – обход по часовой стрелке ребер, исходящих соостветсвенно из v и w. Пусть G' – планарная триангуляция, полученная из G стягиванием ребра vw в вершину s. Заменим пары параллельных ребер vq & wq на sq и vp & wp на sp. Получим вершину s, из которой исходят ребра (sp, sy_1, sy_2 … sy_l, sq, sx_1, sx_2 … sx_k) – по часовой стрелке. Мы получили граф G', с меньшим числом вершин = V - 1 — то есть его можно уложить на плоскости требуемым образом: все ребра прямые (и сохранен обход по часовой стрелке ребер инцидентных s). Для любого E>0 обозначим C_E(s) — круг радиуса E, с вершиной s в центре. Для каждого соседа t вершины s в графе G' обозначим R_E(t) область, содержащую множество всех окрытых отрезков от t до каждой точки из C_E(s). Возьмем E равным минимуму из всех расстояний от вершины s до инцидентных ей вершин и до отрезков, проходящих мимо нее. Тогда получим, что все соседи t вершины s находятся снаружи C_E(s) и только ребра G', пересекающие R_E(t), являются инцидентными s. Проведем линию L через вершину s так, чтобы вершина p лежла с одной ее стороны, а q — с другой (иначе L наложится на ребра sp & sq. ), и L никакое из ребер {sx_i : 1<i<k} и {sy_i : 1<i<l} не лежало на ней. Ребра sq & sq разбивают C_E(s) на две дуги: первая пересекает ребра {sx_i : 1<i<k}, а вторая — ребра {sy_i : 1<i<l}. L пересекает C_E(s) в двух точках. Расположим v & w в этих точках: v на дуге, пересекающей {sx_i : 1<i<k}, а w с другой стороны. Удалим s и инцидентные ей ребра, нарисуем прямые ребра G, инцидентные v и w. Получим, что vw лежит на L. Так как p и q лежат с разных сторон L, ребра, инцидентные v и w, не пересекаются. По выбору E, ребра, инцидентные v и w, не пересекают и другие ребра G. Таким образом желаемая укладка графа G достигнута. Теперь мы можем удалить триангуляцию графа, оставив в графе лишь исходные (уже прямые) ребра. |