Meet-in-the-middle — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(переписано определение)
м
Строка 6: Строка 6:
  
 
== Задача о нахождение четырех чисел с суммой равной нулю ==
 
== Задача о нахождение четырех чисел с суммой равной нулю ==
Дан массив целых чисел <tex>{A}</tex>. Требуется найти любые '''4''' числа, сумма которых равна '''0''' (одинаковые элементы могут быть использованы несколько раз).
+
Дан массив целых чисел <tex>{A}</tex>. Требуется найти любые <tex> 4 </tex> числа, сумма которых равна <tex> 0 </tex> (одинаковые элементы могут быть использованы несколько раз).
  
 
Например : <tex> {A} = ({2,3,1,0,-4,-1}) </tex>. Решением данной задачи является, например, четверка чисел <tex> 3 + 1 + 0 - 4 = 0</tex> или <tex> 0 + 0 + 0 + 0 = 0</tex>.
 
Например : <tex> {A} = ({2,3,1,0,-4,-1}) </tex>. Решением данной задачи является, например, четверка чисел <tex> 3 + 1 + 0 - 4 = 0</tex> или <tex> 0 + 0 + 0 + 0 = 0</tex>.
Строка 16: Строка 16:
 
=== Реализация ===
 
=== Реализация ===
 
   // sum - массив сумм a + b, cnt - счетчик массива sum
 
   // sum - массив сумм a + b, cnt - счетчик массива sum
   '''findsum'''():
+
   '''findsum'''()
 
     '''for''' a = 0..N - 1
 
     '''for''' a = 0..N - 1
 
       '''for''' b = 0..N - 1
 
       '''for''' b = 0..N - 1
Строка 23: Строка 23:
 
         sum[cnt].b = b
 
         sum[cnt].b = b
 
         cnt++
 
         cnt++
     '''sort'''(sum, key="res") // сортируем sum по полю res
+
     '''sort'''(sum, key = "res") // сортируем sum по полю res
 
     '''for''' c = 0..N - 1
 
     '''for''' c = 0..N - 1
 
       '''for''' d = 0..N - 1
 
       '''for''' d = 0..N - 1
Строка 31: Строка 31:
 
     '''return''' "No solution"
 
     '''return''' "No solution"
 
Итоговое время работы <tex> {O(N^2\log{N}}) </tex>.
 
Итоговое время работы <tex> {O(N^2\log{N}}) </tex>.
 +
 +
Если вместо отсортированного массива использовать [[Хеш-таблица | хэш-таблицу]], то задачу можно будет решить за время <tex> O(N^2) </tex>.
  
  
 
== Задача о рюкзаке ==
 
== Задача о рюкзаке ==
Классической задачей является задача о наиболее эффективной упаковке рюкзака. Каждый предмет характеризуется весом (<tex> {w_{i} \le 10^{9}} </tex> ) и ценностью (<tex>{cost_{i} \le 10^{9}} </tex>). В рюкзак, ограниченный по весу, необходимо набрать вещей с максимальной суммарной стоимостью. Для ее решения изначальное множество вещей N разбивается на два равных(или примерно равных) подмножества, для которых за приемлемое время можно перебрать все варианты и подсчитать суммарный вес и стоимость, а затем для каждого из них найти группу вещей из первого подмножества с максимальной стоимостью, укладывающуюся в ограничение по весу рюкзака. Сложность алгоритма <tex>O({2^{N/2}}\times{N})</tex>. Память <tex> O({2^{N/2}})</tex>.
+
Классической задачей является задача о наиболее эффективной упаковке рюкзака. Каждый предмет характеризуется весом (<tex> {w_{i} \leqslant 10^{9}} </tex> ) и ценностью (<tex>{cost_{i} \leqslant 10^{9}} </tex>). В рюкзак, ограниченный по весу, необходимо набрать вещей с максимальной суммарной стоимостью. Для ее решения изначальное множество вещей N разбивается на два равных(или примерно равных) подмножества, для которых за приемлемое время можно перебрать все варианты и подсчитать суммарный вес и стоимость, а затем для каждого из них найти группу вещей из первого подмножества с максимальной стоимостью, укладывающуюся в ограничение по весу рюкзака. Сложность алгоритма <tex>O({2^{N/2}}\cdot{N})</tex>. Память <tex> O({2^{N/2}})</tex>.
  
 
=== Реализация ===
 
=== Реализация ===
Строка 43: Строка 45:
 
Реализуем данный алгоритм:
 
Реализуем данный алгоритм:
 
   // N - количество всех вещей, w[] - массив весов всех вещей, cost[] - массив стоимостей всех вещей, R - ограничение по весу рюкзака.
 
   // N - количество всех вещей, w[] - массив весов всех вещей, cost[] - массив стоимостей всех вещей, R - ограничение по весу рюкзака.
   '''knapsack'''():
+
   '''knapsack'''()
 
     sn = N / 2
 
     sn = N / 2
     fn = N - sn;
+
     fn = N - sn
 
     '''for''' mask = 0..2 ** sn  - 1
 
     '''for''' mask = 0..2 ** sn  - 1
 
       '''for''' j = 0 .. sn
 
       '''for''' j = 0 .. sn
         '''if''' j-ый бит mask = 1
+
         '''if''' j-ый бит mask == 1
 
           first[i].w += w[j];
 
           first[i].w += w[j];
           first[i].c += cost[j];
+
           first[i].c += cost[j]
 
     сортируем first по весу
 
     сортируем first по весу
 
     '''for''' i = 0 .. 2 ** sn - 1
 
     '''for''' i = 0 .. 2 ** sn - 1
       '''if''' существует такое подмножество с индексом j, что first[j].w <= first[i].w && first[j].c >= first[i].c
+
       '''if''' существует такое подмножество с индексом j, что first[j].w <tex> \leqslant </tex> first[i].w && first[j].c <tex> \geqslant </tex> first[i].c
 
         удалим множество с индексом i из массива first
 
         удалим множество с индексом i из массива first
 
    
 
    
 
     '''for''' mask = 0..2 ** fn - 1
 
     '''for''' mask = 0..2 ** fn - 1
 
       '''for''' j = 0..fn
 
       '''for''' j = 0..fn
         '''if''' j-ый бит mask = 1
+
         '''if''' j-ый бит mask == 1
           curw += w[j + sn];
+
           curw += w[j + sn]
           curcost += cost[j + sn];
+
           curcost += cost[j + sn]
 
      
 
      
 
       index = позиция, найденная бинарным поиском в массиве first, подмножества с максимальным весом, не превыщающим R - curv
 
       index = позиция, найденная бинарным поиском в массиве first, подмножества с максимальным весом, не превыщающим R - curv
       '''if''' first[index].w <= R - curw && first[index].c + curcost > ans
+
       '''if''' first[index].w <tex> \leqslant </tex> R - curw && first[index].c + curcost > ans
 
         ans = first[index].c + curcost
 
         ans = first[index].c + curcost
 
     '''return''' ans
 
     '''return''' ans
  
Итоговое время работы <tex> {O({2^{N/2}}\times({N}+\log{2^{N/2}}))} = O({2^{N/2}}\times{N}) </tex>.
+
Итоговое время работы <tex> {O({2^{N/2}}\cdot({N}+\log{2^{N/2}}))} = O({2^{N/2}}\times{N}) </tex>.
  
 
== Задача о нахождении кратчайшего расстояния между двумя вершинами в графе ==
 
== Задача о нахождении кратчайшего расстояния между двумя вершинами в графе ==
 
[[Файл:bfs.png|600px|thumb|right|Нахождение кратчайшего расстояния между двумя вершинами]]
 
[[Файл:bfs.png|600px|thumb|right|Нахождение кратчайшего расстояния между двумя вершинами]]
 
Еще одна задача, решаемая '''Meet-in-the-middle'''  —  это нахождение кратчайшего расстояния между двумя вершинами, зная начальное состояние, конечное состояние и то, что длина оптимального пути не превышает <tex> N </tex>.
 
Еще одна задача, решаемая '''Meet-in-the-middle'''  —  это нахождение кратчайшего расстояния между двумя вершинами, зная начальное состояние, конечное состояние и то, что длина оптимального пути не превышает <tex> N </tex>.
Стандартным подходом для решения данной задачи, является применение алгоритма [[Обход в ширину|обхода в ширину]]. Пусть из каждого состояния у нас есть '''K''' переходов, тогда бы мы сгенерировали <tex> {K^{N}} </tex> состояний. Асимптотика данного решения составила бы <tex> {O({K^{N}})} </tex>. '''Meet-in-the-middle''' помогает снизить асимптотику до <tex> {O({K^{N/2}})} </tex>. <br>
+
Стандартным подходом для решения данной задачи, является применение алгоритма [[Обход в ширину|обхода в ширину]]. Пусть из каждого состояния у нас есть <tex> K </tex> переходов, тогда бы мы сгенерировали <tex> {K^{N}} </tex> состояний. Асимптотика данного решения составила бы <tex> {O({K^{N}})} </tex>. '''Meet-in-the-middle''' помогает снизить асимптотику до <tex> {O({K^{N/2}})} </tex>. <br>
 
=== Алгоритм решения ===  
 
=== Алгоритм решения ===  
  

Версия 20:37, 15 ноября 2013

Определение:
Meet-in-the-middle (Встреча в середине) — это метод решения уравнения вида [math] f({x}) = g({y}) [/math], где [math] x \in {X} [/math] и [math] y \in {Y} [/math], который работает за время [math] O((X + Y)F_X(y))[/math], где [math] F_X(Y) [/math] — время поиска элемента [math] x [/math] в множестве [math] X [/math], удовлетворяющее решению при заданном [math] y [/math], или проверка, что такого [math] x [/math] не существует.

Meet-in-the-middle разбивает задачу пополам и решает всю задачу через частичный расчет половинок. Он работает следующим образом: переберем все возможные значения [math] {x} [/math] и запишем пару значений [math] ({x},{f({x})}) [/math] в множество. Затем будем перебирать всевозможные значения [math] y [/math], для каждого из них будем вычислять [math] g(y) [/math], которое мы будем искать в нашем множестве. Если в качестве множества использовать отсортированный массив, а в качестве функции поиска — бинарный поиск, то время работы нашего алгоритма составляет [math] {O(X\log{X})} [/math] на сортировку, и [math] {O(Y\log{Y})} [/math] на двоичный поиск, что дает в сумме [math]{O((X + Y)\log{X}})[/math].

Задача о нахождение четырех чисел с суммой равной нулю

Дан массив целых чисел [math]{A}[/math]. Требуется найти любые [math] 4 [/math] числа, сумма которых равна [math] 0 [/math] (одинаковые элементы могут быть использованы несколько раз).

Например : [math] {A} = ({2,3,1,0,-4,-1}) [/math]. Решением данной задачи является, например, четверка чисел [math] 3 + 1 + 0 - 4 = 0[/math] или [math] 0 + 0 + 0 + 0 = 0[/math].

Наивный алгоритм заключается в переборе всевозможных комбинаций чисел. Это решение работает за [math] {O(N^4)}[/math]. Теперь, с помощью Meet-in-the-middle мы можем сократить время работы до [math] {O(N^2\log{N}}) [/math].

Для этого заметим, что сумму [math] a + b + c + d = 0 [/math] можно записать как [math] a + b = -(c + d)[/math]. Мы будем хранить все [math] {N^2} [/math] пар сумм [math] a + b [/math] в массиве [math] sum [/math], который мы отсортируем. Далее перебираем все [math] {N^2} [/math] пар сумм [math] c + d [/math] и проверяем бинарным поиском, есть ли сумма [math] -(c + d) [/math] в массиве [math] sum [/math].

Реализация

 // sum - массив сумм a + b, cnt - счетчик массива sum
 findsum()
   for a = 0..N - 1
     for b = 0..N - 1
       sum[cnt].res = A[a] + B[b]
       sum[cnt].a = a
       sum[cnt].b = b
       cnt++
   sort(sum, key = "res") // сортируем sum по полю res
   for c = 0..N - 1
     for d = 0..N - 1
       if сумма -(A[c] + A[d]) есть в массив sum
          index = индекс суммы -(A[c] + A[d])
          return (sum[index].a, sum[index].b, A[c], A[d])
   return "No solution"

Итоговое время работы [math] {O(N^2\log{N}}) [/math].

Если вместо отсортированного массива использовать хэш-таблицу, то задачу можно будет решить за время [math] O(N^2) [/math].


Задача о рюкзаке

Классической задачей является задача о наиболее эффективной упаковке рюкзака. Каждый предмет характеризуется весом ([math] {w_{i} \leqslant 10^{9}} [/math] ) и ценностью ([math]{cost_{i} \leqslant 10^{9}} [/math]). В рюкзак, ограниченный по весу, необходимо набрать вещей с максимальной суммарной стоимостью. Для ее решения изначальное множество вещей N разбивается на два равных(или примерно равных) подмножества, для которых за приемлемое время можно перебрать все варианты и подсчитать суммарный вес и стоимость, а затем для каждого из них найти группу вещей из первого подмножества с максимальной стоимостью, укладывающуюся в ограничение по весу рюкзака. Сложность алгоритма [math]O({2^{N/2}}\cdot{N})[/math]. Память [math] O({2^{N/2}})[/math].

Реализация

Разделим наше множество на две части. Подсчитаем все подмножества из первой части и будем хранить их в массиве [math] first [/math]. Отсортируем массив [math] first [/math] по весу. Далее пройдемся по этому массиву и оставим только те подмножества, для которых не существует другого подмножества с меньшим весом и большей стоимостью. Очевидно, что подмножества, для которых существует другое, более легкое и одновременно более ценное подмножество, можно удалять. Таким образом в массиве [math] first [/math] мы имеем подмножества, отсортированные не только по весу, но и по стоимости. Тогда начнем перебирать все возможные комбинации вещей из второй половины и находить бинарным поиском удовлетворяющие нам подмножества из первой половине, хранящиеся в массиве [math] first [/math].


Реализуем данный алгоритм:

 // N - количество всех вещей, w[] - массив весов всех вещей, cost[] - массив стоимостей всех вещей, R - ограничение по весу рюкзака.
 knapsack()
   sn = N / 2
   fn = N - sn
   for mask = 0..2 ** sn  - 1
     for j = 0 .. sn
       if j-ый бит mask == 1
         first[i].w += w[j];
         first[i].c += cost[j]
   сортируем first по весу
   for i = 0 .. 2 ** sn - 1
     if существует такое подмножество с индексом j, что first[j].w [math] \leqslant [/math] first[i].w && first[j].c [math] \geqslant [/math] first[i].c
       удалим множество с индексом i из массива first
 
   for mask = 0..2 ** fn - 1
     for j = 0..fn
       if j-ый бит mask == 1
         curw += w[j + sn]
         curcost += cost[j + sn]
   
     index = позиция, найденная бинарным поиском в массиве first, подмножества с максимальным весом, не превыщающим R - curv
     if first[index].w [math] \leqslant [/math] R - curw && first[index].c + curcost > ans
       ans = first[index].c + curcost
   return ans

Итоговое время работы [math] {O({2^{N/2}}\cdot({N}+\log{2^{N/2}}))} = O({2^{N/2}}\times{N}) [/math].

Задача о нахождении кратчайшего расстояния между двумя вершинами в графе

Нахождение кратчайшего расстояния между двумя вершинами

Еще одна задача, решаемая Meet-in-the-middle — это нахождение кратчайшего расстояния между двумя вершинами, зная начальное состояние, конечное состояние и то, что длина оптимального пути не превышает [math] N [/math]. Стандартным подходом для решения данной задачи, является применение алгоритма обхода в ширину. Пусть из каждого состояния у нас есть [math] K [/math] переходов, тогда бы мы сгенерировали [math] {K^{N}} [/math] состояний. Асимптотика данного решения составила бы [math] {O({K^{N}})} [/math]. Meet-in-the-middle помогает снизить асимптотику до [math] {O({K^{N/2}})} [/math].

Алгоритм решения

1. Сгенерируем bfs-ом все состояния, доступные из начала и конца за [math] {N/2} [/math] или меньше ходов.

2. Найдем состояния, которые достижимы из начала и из конца.

3. Найдем среди них наилучшее по сумме длин путей.


Таким образом, bfs-ом из двух концов, мы сгенерируем максимум [math] {O({K^{N/2}})} [/math] состояний.

См. также

Cсылки