Хроматическое число планарного графа — различия между версиями
Martoon (обсуждение | вклад) (Новая страница: «Для планарного графа можно дать оценку сверху на [[Раскраска_графа#chromatic_number_difinition|хромат...») |
Martoon (обсуждение | вклад) м (Перенесено из http://neerc.ifmo.ru/wiki/index.php?title=Хроматический_многочлен_планарного_графа) |
||
Строка 36: | Строка 36: | ||
Иначе, уложим полученный после удаления <tex> u </tex> граф на плоскость и пронумеруем цвета в порядке обхода смежных вершин по часовой стрелке. | Иначе, уложим полученный после удаления <tex> u </tex> граф на плоскость и пронумеруем цвета в порядке обхода смежных вершин по часовой стрелке. | ||
− | Попробуем покрасить <tex> u </tex> в цвет 1. Чтобы раскраска осталась правильной, перекрасим смежную ей вершину <tex>v_1^{(1)}</tex> в цвет 3. Если среди смежных ей вершин есть вершины <tex> v_2^{(3)} </tex>, покрасим их в цвет 1, и так далее. Рассмотрим | + | Попробуем покрасить <tex> u </tex> в цвет 1. Чтобы раскраска осталась правильной, перекрасим смежную ей вершину <tex>v_1^{(1)}</tex> в цвет 3. Если среди смежных ей вершин есть вершины <tex> v_2^{(3)} </tex>, покрасим их в цвет 1, и так далее. Рассмотрим две необычные ситуации, которые могут наступить во время обхода: |
#мы дойдём до уже однажды перекрашенной вершины (и хотим перекрасить её обратно). Видно что такая ситуация невозможна, поскольку мы меняли цвета вершин по схеме 1 <tex>\leftrightarrow</tex> 3, и если мы получили две смежные вершины одного цвета, значит и до перекрасок в графе были две вершины одинакового цвета, а по предположению граф без <tex> u </tex> был раскрашен правильно. | #мы дойдём до уже однажды перекрашенной вершины (и хотим перекрасить её обратно). Видно что такая ситуация невозможна, поскольку мы меняли цвета вершин по схеме 1 <tex>\leftrightarrow</tex> 3, и если мы получили две смежные вершины одного цвета, значит и до перекрасок в графе были две вершины одинакового цвета, а по предположению граф без <tex> u </tex> был раскрашен правильно. | ||
#дойдём до вершины, смежной <tex> u </tex>, исходно имевшей цвет 3, которую перекрасить в 1 нельзя (<tex> u </tex> теперь имеет цвет 1). | #дойдём до вершины, смежной <tex> u </tex>, исходно имевшей цвет 3, которую перекрасить в 1 нельзя (<tex> u </tex> теперь имеет цвет 1). | ||
Строка 45: | Строка 45: | ||
Тогда попытаемся таким же образом перекрасить <tex> u </tex> в цвет 2, а смежную ей <tex>w_1^{(2)}</tex> в цвет 4 (со последующими перекрасками). Если удастся - раскраска получена. | Тогда попытаемся таким же образом перекрасить <tex> u </tex> в цвет 2, а смежную ей <tex>w_1^{(2)}</tex> в цвет 4 (со последующими перекрасками). Если удастся - раскраска получена. | ||
− | Если нет, то получили ещё один цикл <tex> u w_1^{(2)} w_2^{(4)} w_3^{(2)} ... w_{k-1}^{(2)} w_k^{(4)} u </tex>. Но граф планарный, значит два полученных цикла пересекаются по крайней мере в двух вершинах - <tex> u </tex> и какой-то другой, что невозможно, ведь вершины <tex> v_i </tex> первого цикла и <tex> w_j </tex> второго - разных цветов. | + | Если нет, то получили ещё один цикл <tex> u w_1^{(2)} w_2^{(4)} w_3^{(2)} ... w_{k-1}^{(2)} w_k^{(4)} u </tex>. Но граф планарный, значит два полученных цикла пересекаются по крайней мере в двух вершинах - <tex> u </tex> и какой-то другой, что невозможно, ведь вершины <tex> v_i </tex> первого цикла и <tex> w_j </tex> второго - разных цветов. Значит такой случай наступить не мог. |
}} | }} |
Версия 17:01, 10 декабря 2013
Для планарного графа можно дать оценку сверху на хроматическое число.
Раскраска в 6 цветов
Лемма: |
В любом графе существует вершина степени не больше 5 |
Доказательство: |
Предположим это не так. Для любой вершины следствию из теоремы Эйлера . Пришли к противоречию. | графа верно . Если сложить это неравенство для всех , получим . Но по
Теорема: |
Пусть граф - планарный. Тогда |
Доказательство: |
Докажем по индукции.
Если граф содержит не более 6 вершин, то утверждение очевидно.
Предположим, что для планарного графа с вершинами существует раскраска в 6 цветов. Докажем то же для графа с вершиной.По только что доказанной лемме в Вернём удалённую вершину и покрасим её в цвет, не встречающийся среди смежных ей вершин. Индукционный переход доказан найдётся вершина степени не больше 5. Удалим её; по предположению индукции получившийся граф можно раскрасить в 6 цветов. |
Раскраска в 5 цветов
Теорема: |
Пусть граф - планарный. Тогда |
Доказательство: |
Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной. Обозначим за - возвращаемую вершину, - вершина, покрашенная в цвет.Если среди вершин, смежных , есть две вершины одного цвета, значит остаётся один свободный цвет, в который мы и покрасим .Иначе, уложим полученный после удаления граф на плоскость и пронумеруем цвета в порядке обхода смежных вершин по часовой стрелке.Попробуем покрасить в цвет 1. Чтобы раскраска осталась правильной, перекрасим смежную ей вершину в цвет 3. Если среди смежных ей вершин есть вершины , покрасим их в цвет 1, и так далее. Рассмотрим две необычные ситуации, которые могут наступить во время обхода:
Если этот процесс был успешно завершён, то получили правильную раскраску. Если же в соответствии со 2-ым вариантом перекраска не удалась, это означает, что в есть цикл .Тогда попытаемся таким же образом перекрасить Если нет, то получили ещё один цикл в цвет 2, а смежную ей в цвет 4 (со последующими перекрасками). Если удастся - раскраска получена. . Но граф планарный, значит два полученных цикла пересекаются по крайней мере в двух вершинах - и какой-то другой, что невозможно, ведь вершины первого цикла и второго - разных цветов. Значит такой случай наступить не мог. |
Заметим что нельзя составить подобное доказательство для раскраски в 4 цвета, поскольку здесь наличие двух вершин одного цвета среди смежных
не исключает того, что все они раскрашены в разные цвета