Антисимметричное отношение — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(англоязычные термины, ссылка на асимметричность (википедия), внешние ссылки исправлены на внутренние)
Строка 32: Строка 32:
 
Антисимметрично отношение делимости на натуральных числах (если <tex>a \mid b</tex> и <tex>b \mid a</tex>, то <tex>a=b</tex>)
 
Антисимметрично отношение делимости на натуральных числах (если <tex>a \mid b</tex> и <tex>b \mid a</tex>, то <tex>a=b</tex>)
  
Отношение включения на <tex>2^U</tex>, где <tex>U</tex> - универсум, антисимметрично (<tex> A \subseteq B \wedge B \subseteq A \Rightarrow A = B</tex>).
+
Отношение включения на <tex>2^U</tex>, где <tex>U</tex> {{---}} универсум, антисимметрично (<tex> A \subseteq B \wedge B \subseteq A \Rightarrow A = B</tex>).
  
 
== Свойства антисимметричного отношения ==
 
== Свойства антисимметричного отношения ==
  
[[Файл:antisym.png|200px|thumb|right|Граф антисимметричного отношения (не имеет кратных ребер)]]
+
[[Файл:antisym.png|400px|thumb|right|Граф антисимметричного отношения (не имеет кратных ребер)]]
[[Файл:nonantisym.png|200px|thumb|right|Граф отношения, не являющегося антисимметричным]]
+
[[Файл:nonantisym.png|400px|thumb|right|Граф отношения, не являющегося антисимметричным]]
 
Матрица смежности антисимметричного отношения может содержать единицы на главной диагонали, притом если элемент <tex>a_{ij}</tex> матрицы равен единице, то элемент <tex>a_{ji}</tex> равен нулю.  
 
Матрица смежности антисимметричного отношения может содержать единицы на главной диагонали, притом если элемент <tex>a_{ij}</tex> матрицы равен единице, то элемент <tex>a_{ji}</tex> равен нулю.  
  
Строка 60: Строка 60:
 
Ориентированный граф, изображающий антисимметричное отношение, не имеет двух дуг с противоположной ориентацией между двумя различными вершинами, однако в нём могут быть петли.  
 
Ориентированный граф, изображающий антисимметричное отношение, не имеет двух дуг с противоположной ориентацией между двумя различными вершинами, однако в нём могут быть петли.  
  
Если <tex>a</tex> и <tex>b</tex> - некоторые антисимметричные отношения, то антисимметричными также являются отношения:
+
Если <tex>a</tex> и <tex>b</tex> {{---}} некоторые антисимметричные отношения, то антисимметричными также являются отношения:
 
#<tex>a\cap b</tex>
 
#<tex>a\cap b</tex>
 
#<tex>a^{-1}</tex>
 
#<tex>a^{-1}</tex>
Строка 70: Строка 70:
 
* [[Симметричное отношение]]
 
* [[Симметричное отношение]]
  
== Источники ==
+
== Источники информации ==
 
* [http://ru.wikipedia.org/wiki/Антисимметричное_отношение Антисимметричное отношение {{---}} Википедия]
 
* [http://ru.wikipedia.org/wiki/Антисимметричное_отношение Антисимметричное отношение {{---}} Википедия]
 
* [http://en.wikipedia.org/wiki/Antisymmetric_relation Антисимметричное отношение {{---}} статья на английской Википедии]
 
* [http://en.wikipedia.org/wiki/Antisymmetric_relation Антисимметричное отношение {{---}} статья на английской Википедии]
 
* [http://www.madi.ru/study/kafedra/asu_new/metod_new/mil/tpr09_13.shtml#1 Статья на сайте МАДИ]
 
* [http://www.madi.ru/study/kafedra/asu_new/metod_new/mil/tpr09_13.shtml#1 Статья на сайте МАДИ]
 
== Ссылки ==
 
 
* [http://en.wikipedia.org/wiki/Asymmetric_relation Wikipedia | Asymmetric relation]
 
* [http://en.wikipedia.org/wiki/Asymmetric_relation Wikipedia | Asymmetric relation]
  
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Отношения]]
 
[[Категория: Отношения]]

Версия 01:00, 16 октября 2014

Основные определения

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется антисимметричным (англ. antisymmetric binary relation), если для любых элементов [math]a[/math] и [math]b[/math] множества [math]X[/math] из выполнения отношений [math]aRb[/math] и [math]bRa[/math] следует равенство [math]a[/math] и [math]b[/math].
[math]\forall a, b \in X,\ aRb \wedge bRa \; \Rightarrow \; a = b[/math]

Или эквивалентное

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется антисимметричным, если для любых неравных элементов [math]a[/math] и [math]b[/math] множества [math]X[/math] из выполнения отношения [math]aRb[/math] следует невыполнение отношения [math]bRa[/math].
[math]\forall a, b \in X,\ aRb \wedge a \ne b \Rightarrow \lnot bRa[/math]

Определение антисимметричного отношения как [math] aRb \Rightarrow \neg bRa [/math] является избыточным (и потому неверным), поскольку из такого определения также следует антирефлексивность R.

Антисимметричность отношения не исключает симметричности. Существуют бинарные отношения:

  • одновременно симметричные и антисимметричные (отношение равенства);
  • ни симметричные, ни антисимметричные;
  • симметричные, но не антисимметричные;
  • антисимметричные, но не симметричные ("меньше или равно", "больше или равно");

Антирефлексивное антисимметричное отношение иногда называют асимметричным. Следует различать эти два понятия. Формальное определение:

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется асимметричным (англ. asymmetric binary relation), если для любых элементов [math]a[/math] и [math]b[/math] множества [math]X[/math] одновременное выполнение отношений [math]a R b[/math] и [math]b R a[/math] невозможно.

Примеры антисимметричных отношений

Примерами антисимметричных отношений являются, по определению, все отношения полного и частичного порядка ([math] \lt , \gt , \le, \ge [/math] и другие).

Антисимметрично отношение делимости на натуральных числах (если [math]a \mid b[/math] и [math]b \mid a[/math], то [math]a=b[/math])

Отношение включения на [math]2^U[/math], где [math]U[/math] — универсум, антисимметрично ([math] A \subseteq B \wedge B \subseteq A \Rightarrow A = B[/math]).

Свойства антисимметричного отношения

Граф антисимметричного отношения (не имеет кратных ребер)
Граф отношения, не являющегося антисимметричным

Матрица смежности антисимметричного отношения может содержать единицы на главной диагонали, притом если элемент [math]a_{ij}[/math] матрицы равен единице, то элемент [math]a_{ji}[/math] равен нулю.

Например, если [math]A[/math] — матрица смежности отношения "[math]\le[/math]" на [math]X \subset N, X = \{1, 2, 3 ,4 , 5\}[/math]; [math]B[/math] — матрица смежности отношения делимости на том же множестве [math]X[/math], то

[math] A=\bordermatrix{ & 1 & 2 & 3 & 4 & 5 \cr 1 & 1 & 1 & 1 & 1 & 1 \cr 2 & 0 & 1 & 1 & 1 & 1 \cr 3 & 0 & 0 & 1 & 1 & 1 \cr 4 & 0 & 0 & 0 & 1 & 1 \cr 5 & 0 & 0 & 0 & 0 & 1 \cr } [/math]

[math] B=\bordermatrix{ & 1 & 2 & 3 & 4 & 5 \cr 1 & 1 & 1 & 1 & 1 & 1 \cr 2 & 0 & 1 & 0 & 1 & 0 \cr 3 & 0 & 0 & 1 & 0 & 0 \cr 4 & 0 & 0 & 0 & 1 & 0 \cr 5 & 0 & 0 & 0 & 0 & 1 \cr } [/math]

Ориентированный граф, изображающий антисимметричное отношение, не имеет двух дуг с противоположной ориентацией между двумя различными вершинами, однако в нём могут быть петли.

Если [math]a[/math] и [math]b[/math] — некоторые антисимметричные отношения, то антисимметричными также являются отношения:

  1. [math]a\cap b[/math]
  2. [math]a^{-1}[/math]
  3. [math]b^{-1}[/math]

Однако объединение и композиция [math]a[/math] и [math]b[/math] могут не сохранять антисимметричности.

См. также

Источники информации