Отношение эквивалентности — различия между версиями
Savelin (обсуждение | вклад) (англоязычные термины, англ. википедия) |
м (→Классы эквивалентности) |
||
Строка 37: | Строка 37: | ||
Если на множестве M задано отношение эквивалентности <tex>\thicksim</tex>, то оно порождает разбиение этого множества на '''классы эквивалентности''' такое, что: | Если на множестве M задано отношение эквивалентности <tex>\thicksim</tex>, то оно порождает разбиение этого множества на '''классы эквивалентности''' такое, что: | ||
* любые два элемента одного класса находятся в отношении <tex>\thicksim</tex> | * любые два элемента одного класса находятся в отношении <tex>\thicksim</tex> | ||
− | * любые два | + | * любые два элемента разных классов не находятся в отношении <tex>\thicksim</tex> |
}} | }} | ||
Семейство всех классов эквивалентности множества образует множество, называемое ''фактор-множеством'', или ''факторизацией'' множества <tex>M</tex> по отношению <tex>\thicksim</tex>, и обозначаемое <tex>M/^{\thicksim}</tex>. | Семейство всех классов эквивалентности множества образует множество, называемое ''фактор-множеством'', или ''факторизацией'' множества <tex>M</tex> по отношению <tex>\thicksim</tex>, и обозначаемое <tex>M/^{\thicksim}</tex>. |
Версия 13:53, 6 января 2014
Определение: |
Бинарное отношение на множестве называется отношением эквивалентности (англ. equivalence binary relation), если оно обладает следующими свойствами:
|
Отношение эквивалентности обозначают символом
. Запись вида читают как " эквивалентно "Примеры отношений эквивалентности
- Отношение равенства( ) является тривиальным примером отношения эквивалентности на любом множестве.
- Отношение равенства по модулю : на множестве целых чисел.
- Отношение параллельности прямых на плоскости.
- Отношение подобия фигур на плоскости.
- Отношение равносильности на множестве уравнений.
- Отношение связности вершин в графе.
- Отношение быть одного роста на множестве людей.
Следующие отношения не являются отношениями эквивалентности:
- Отношения порядка, так как они не являются симметричными.
- Отношение быть знакомым на множестве людей, так как оно не транзитивное.
Классы эквивалентности
Определение: |
Система непустых подмножеств
| множества называется разбиением (англ. partition) данного множества, если:
Примерами разбиений являются:
- Разбиение многоугольников на группы по числу вершин.
- Разбиение треугольников по свойствам углов (остроугольные, прямоугольные, тупоугольные).
- Разбиение учащихся школы по классам.
Теорема: |
Если на множестве M задано отношение эквивалентности , то оно порождает разбиение этого множества на классы эквивалентности такое, что:
|
Семейство всех классов эквивалентности множества образует множество, называемое фактор-множеством, или факторизацией множества
по отношению , и обозначаемое .Примеры
- Равенство - классический пример отношения эквивалентности на любом множестве, в т. ч. вещественных чисел
- Равенство по модулю:
- В Евклидовой геометрии:
- отношение подобия
- отношение параллельности
- отношение конгруэнтности
- Разбиение многоугольников по количеству вершин
- Оношение равносильности на множестве уравнений
- Отношение равномощности множеств
- Отношение принадлежать к одному виду на множестве животных
- Отношение жить в одном городе на множестве людей