Многочлен Татта — различия между версиями
(→Существование и единственность) |
(→Существование и единственность) |
||
Строка 30: | Строка 30: | ||
{{Определение|definition= | {{Определение|definition= | ||
− | Показатели в формуле раногового многочлена тоже имеют некоторый смысл. Величина <tex> \rho (E) - \rho (A) </tex> равна <tex> c(G(A)) - c(G) </tex>, т.е. приросту числа компонент связности за счёт перехода к множеству рёбер <tex> A </tex>. Мы будем обозначать эту величину через <tex> \rho *(A) </tex> и называть числом ''важных'' для <tex> A </tex> рёбер. (Их важно добавить к <tex> A </tex>, чтобы получилось столько же компонент связности, сколько было изначально). | + | Показатели в формуле раногового многочлена тоже имеют некоторый смысл. Величина <tex> \rho (E) - \rho (A) </tex> равна <tex> c(G(A)) - c(G) </tex>, т.е. приросту числа компонент связности за счёт перехода к множеству рёбер <tex> A </tex>. Мы будем обозначать эту величину через <tex> \rho *(A) </tex> и называть числом ''важных'' для <tex> A </tex> рёбер. (Их важно добавить к <tex> A </tex>, чтобы получилось столько же компонент связности, сколько было изначально). <br> |
− | <br> | ||
Величину <tex> |A| - \rho (A) </tex> будем называть числом ''лишних'' ребёр: именно столько рёбер можно выкинуть из множества <tex> A </tex>, не меняя число компонент связности. Обозначать эту величину будем через <tex> \overline{\rho} (A)</tex>. | Величину <tex> |A| - \rho (A) </tex> будем называть числом ''лишних'' ребёр: именно столько рёбер можно выкинуть из множества <tex> A </tex>, не меняя число компонент связности. Обозначать эту величину будем через <tex> \overline{\rho} (A)</tex>. | ||
}} | }} |
Версия 16:50, 15 декабря 2013
Основные определения
Определение: |
Рассмотрим граф
| , возможно петлями и кратными рёбрами. Определим многочлен Татта следующими рекурсивными соотношениями:
Разумеется, существование и единственность многочлена Татта ещё нужно доказать. Для того чтобы это сделать, покажем, что многочлену Татта соответствует, так называемый, ранговый многочлен, который уже задаётся явной формулой.
Существование и единственность
Определение: |
Пусть | - некоторый граф. Для множества через будем обозначать граф . Через будем обозначать число компонент связности графа . Рангом множества будем называть число .
Утверждение: |
Ранг множества равен количеству рёбер в любом остовном лесе графа . (под остовным лесом здесь понимается объединение остовных деревьев всех компонент связности, т.е. такой ациклический граф , что и ) |
Действительно, в каждой компоненте связности остовного леса рёбер на одно меньше чем вершин, а общее число вершин равно | .
Теперь определим сам ранговый многочлен.
Определение: |
Ранговый многочлен графа | есть многочлен от двух переменных, определяемый формулой:
Определение: |
Показатели в формуле раногового многочлена тоже имеют некоторый смысл. Величина Величину будем называть числом лишних ребёр: именно столько рёбер можно выкинуть из множества , не меняя число компонент связности. Обозначать эту величину будем через . | равна , т.е. приросту числа компонент связности за счёт перехода к множеству рёбер . Мы будем обозначать эту величину через и называть числом важных для рёбер. (Их важно добавить к , чтобы получилось столько же компонент связности, сколько было изначально).
Далее, докажем следующую техническую лемму:
Лемма: |
... |
Доказательство: |
... |