Теорема Гринберга — различия между версиями
Slavian (обсуждение | вклад) |
Slavian (обсуждение | вклад) |
||
Строка 6: | Строка 6: | ||
Пусть <tex>G</tex> плоский граф без петель с гамильтоновым циклом <tex>C</tex>, который делит плоскости на две области <tex>R</tex> и <tex>R'</tex>. Пусть <tex>k_i</tex> и <tex>k'_i</tex> {{---}} количества граней размера <tex>i</tex> в <tex>R</tex> и <tex>R'</tex> соответственно. Тогда | Пусть <tex>G</tex> плоский граф без петель с гамильтоновым циклом <tex>C</tex>, который делит плоскости на две области <tex>R</tex> и <tex>R'</tex>. Пусть <tex>k_i</tex> и <tex>k'_i</tex> {{---}} количества граней размера <tex>i</tex> в <tex>R</tex> и <tex>R'</tex> соответственно. Тогда | ||
− | <math>\ | + | <math>\sum\limits_{i=3}^{V(G)}(i-2)(k_i-k'_i)=0</math> |
|proof= | |proof= | ||
[[Файл: HamiltonExampleR.png|300px|thumb|right|Пример. Рёбра из гамильтонова цикла выделены красным]] | [[Файл: HamiltonExampleR.png|300px|thumb|right|Пример. Рёбра из гамильтонова цикла выделены красным]] | ||
− | Отметим, что в гамильтоновом графе <tex>G</tex>, очевидно, нет [[Мост, эквивалентные определения|мостов]] и граница любой грани {{---}} простой цикл. Поэтому размер границы каждой его грани не более <tex>V(G)</tex>. Пусть <tex>e</tex> и <tex>e'</tex> {{---}} количества рёбер графа <tex>G</tex>, лежащих внутри областей <tex>R</tex> и <tex>R'</tex> соответственно. Так как <tex>C</tex> {{---}} гамильтонов цикл графа <tex>G</tex>, то область R разбита на <tex>e + 1</tex> граней. а область <tex>R'</tex> {{---}} на <tex>e' + 1</tex> граней. Получаем соотношения: | + | Отметим, что в гамильтоновом графе <tex>G</tex>, очевидно, нет [[Мост, эквивалентные определения|мостов]] и граница любой грани {{---}} простой цикл. Поэтому размер границы каждой его грани не более <tex>V(G)</tex>. Пусть <tex>e</tex> и <tex>e'</tex> {{---}} количества рёбер графа <tex>G</tex>, лежащих внутри областей <tex>R</tex> и <tex>R'</tex> соответственно. Так как <tex>C</tex> {{---}} гамильтонов цикл графа <tex>G</tex>, то область <tex>R</tex> разбита на <tex>e + 1</tex> граней. а область <tex>R'</tex> {{---}} на <tex>e' + 1</tex> граней. Получаем соотношения: |
− | (1) <math>\ | + | (1) <math>\sum\limits_{i=3}^{V(G)}k_i=e+1</math>, <math>\sum\limits_{i=3}^{V(G)}k'_i=e'+1</math> |
Каждое внутреннее ребро области <tex>R</tex> входит в границы двух внутренних граней области <tex>R</tex>, а каждое ребро цикла <tex>C</tex> {{---}} в границу одной внутренней грани этой области. Аналогичное соотношение верно и для <tex>R'</tex>. Следовательно, | Каждое внутреннее ребро области <tex>R</tex> входит в границы двух внутренних граней области <tex>R</tex>, а каждое ребро цикла <tex>C</tex> {{---}} в границу одной внутренней грани этой области. Аналогичное соотношение верно и для <tex>R'</tex>. Следовательно, | ||
− | (2) <math>\ | + | (2) <math>\sum\limits_{i=3}^{V(G)}i*k_i=2e+E(C)</math>, <math>\sum\limits_{i=3}^{V(G)}i*k'_i=2e'+E(C)</math> |
Из соотношений (1) и (2) получаем: | Из соотношений (1) и (2) получаем: | ||
− | <math>\ | + | <math>\sum\limits_{i=3}^{V(G)}i(k_i-k'_i)=2(e - e')=\sum\limits_{i=3}^{V(G)}2(k_i-k'_i)</math> |
откуда немедленно следует доказываемое утверждение. | откуда немедленно следует доказываемое утверждение. | ||
Строка 26: | Строка 26: | ||
Используя свою теорему, Гринберг построил трёхсвязный кубический плоский граф, в котором ровно одна грань имеет <tex>9</tex> рёбер, а все остальные {{---}} по <tex>5</tex> или <tex>8</tex> рёбер. | Используя свою теорему, Гринберг построил трёхсвязный кубический плоский граф, в котором ровно одна грань имеет <tex>9</tex> рёбер, а все остальные {{---}} по <tex>5</tex> или <tex>8</tex> рёбер. | ||
− | Левая часть соотношения <math>\ | + | Левая часть соотношения <math>\sum\limits_{i=3}^{V(G)}(i-2)(k_i-k'_i)=0</math> в таком графе, очевидно, не делится на <tex>3</tex>, так как сравнима по модулю <tex>3</tex> с <tex>(9 - 2)(k_9 − k'_9) = 7</tex>. |
[[Файл: Grinberg_Graph_numbers.png|300px|thumb|left|Граф Гринберга. Проставлено количество ребер в гранях.]] | [[Файл: Grinberg_Graph_numbers.png|300px|thumb|left|Граф Гринберга. Проставлено количество ребер в гранях.]] |
Версия 17:50, 25 декабря 2013
Теорема Гринберга(англ. Grinberg) - необходимое условие содержания гамильтонова цикла планарным графом.
Теорема (Гринберга): |
Пусть плоский граф без петель с гамильтоновым циклом , который делит плоскости на две области и . Пусть и — количества граней размера в и соответственно. Тогда
|
Доказательство: |
Отметим, что в гамильтоновом графе мостов и граница любой грани — простой цикл. Поэтому размер границы каждой его грани не более . Пусть и — количества рёбер графа , лежащих внутри областей и соответственно. Так как — гамильтонов цикл графа , то область разбита на граней. а область — на граней. Получаем соотношения: , очевидно, нет(1) ,Каждое внутреннее ребро области входит в границы двух внутренних граней области , а каждое ребро цикла — в границу одной внутренней грани этой области. Аналогичное соотношение верно и для . Следовательно,(2) ,Из соотношений (1) и (2) получаем: откуда немедленно следует доказываемое утверждение. |
Используя свою теорему, Гринберг построил трёхсвязный кубический плоский граф, в котором ровно одна грань имеет
рёбер, а все остальные — по или рёбер. Левая часть соотношения в таком графе, очевидно, не делится на , так как сравнима по модулю с .Придуманый Гринбергом в 1968 году критерий негамильтоновисти графа, позволил наконец построить контрпримеры к Тейта(1884г) о том, что любой 3-регулярный трёхсвязный планарный граф имеет гамильтонов цикл. Долгое время единственным контрпримером к этой гипотезе был граф Татта(1946), негамильтоновость которого доказывалась перебором.